

Advanced Information and Knowledge Processing

Series Editors
Professor Lakhmi Jain
Lakhmi.jain@unisa.edu.au
Professor Xindong Wu
xwu@cs.uvm.edu

For other titles published in this series, go to
www.springer.com/series/4738

Chenyi Hu • Ralph Baker Kearfott
André de Korvin • Vladik Kreinovich
Editors

Knowledge Processing
with Interval and Soft
Computing

123

Editors
Chenyi Hu Ralph Baker Kearfott
Computer Science Department Mathematics Department
University of Central Arkansas University of Louisiana, USA
Conway, Arkansas, USA

André de Korvin Vladik Kreinovich
Computer and Mathematical Sciences Computer Science Department

Department University of Texas, USA
University of Houston-Downtown, USA

AI&KP ISSN 1610-3947
ISBN: 978-1-84800-325-5 e-ISBN: 978-1-84800-326-2
DOI: 10.1007/978-1-84800-326-2

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008933360

c©Springer-Verlag London Limited 2008
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com

Preface

Modern technologies have collected massive datasets from observations, ex-
periments, and scientific simulation. Although progress has been made, it still
remains a challenge to effectively and efficiently discover knowledge from such
massive datasets. This is mainly because of the following two features. One
is that the size and number of attributes (dimensions) of some datasets can
be unmanageable. The other is that, due to the dynamic nature of the real
world, changes and uncertainties are characteristics of datasets.

A significant change in scientists’ ability to analyze data to obtain
a better understanding of natural phenomena will be enabled by (i)
new ways to manage massive amounts of data from observations and
scientific simulation, (ii) integration of powerful analysis tools directly
into the database,
· · ·
Final report of the International Science 2020 Group, Microsoft, 2006

In contrast to classical point methods for arranging and processing data,
in this book, we investigate strategies for knowledge processing with interval
and soft computing.

Knowledge processing with interval methods has intrinsic merit. First,
qualitative properties are often presented as ranges of data attributes rather
than specific points. For example, one’s blood pressure is normal if within the
normal range (i. e. normal interval). By grouping attribute values into mean-
ingful intervals, we can omit insignificant quantitative differences and focus
more on qualitatively processing datasets. More importantly, interval-valued
attributes contain more information than points and can represent variability
and uncertainty. Finally, interval-valued computational results can be more
meaningful and useful than point-valued output in a dynamic environment.

Statistical and probabilistic methods have been widely applied in knowl-
edge discovery. However, despite the fact that confidence intervals and fuzzy
intervals have been used to deal with uncertainties, they may not always work

VI Preface

well in practice. By integrating interval methods with stochastic models and
fuzzy logic, this book provides at least additional, if not more powerful, tools
for knowledge processing, especially for handling variability and uncertainty.

Successful applications have been putting interval computing into the
mainstream of computing. In 2006, the C++ standard committee evaluated
a detailed proposal to include interval computing as a part of the ANSI/ISO
C++ standard library. Interval arithmetic has already been in the kernel
computations of Intel’s Itanium-based architecture. Aside from many other
software tools, Sun Microsystems has already included interval arithmetic in
its Sun Studio.

More importantly, applying unique properties of interval computing, new
algorithms have been developed to solve some otherwise very difficult prob-
lems. For example, one can computationally find all roots for nonlinear sys-
tems of equations on a given domain with interval Newton/generalized bisec-
tion methods and reliably find nonlinear global optima with interval branch-
and-bound algorithms computationally. Very recently, Ferguson and Hales
proved the 400-year-old Kepler conjecture with interval methods. In 2007,
they received the first Robbins Prize from American Mathematical Society
for their work.

Knowledge processing with intervals is significantly different from that
with points. In this book, we extend previous knowledge processing methods to
interval-valued datasets. By embedding interval and soft computing methods
into distributed homogeneous and/or heterogeneous database systems that
collect and manage massive datasets, scientists may significantly enhance their
ability to process massive datasets.

This book can be used as an introduction to interval methods and soft com-
puting for knowledge processing for upper-level undergraduates or first-year
graduate students. It can also be a reference for researchers and practitioners.

We intended to make this book self-contained. Chapters 1, 2, and 3 pro-
vide necessary background knowledge for readers who are unfamiliar with
interval and soft computing. Specifically, Chapter 1 introduces fundamentals
of interval computing. In using interval computing for knowledge processing,
soft computing technologies are applied. Therefore, Chapter 2 reviews essen-
tials of soft computing. Although interval arithmetic and soft computing were
developed independently, both of them can deal with uncertainty. We devote
Chapter 3 to presenting their relationships. Readers familiar with these topics
may skip the first three chapters.

Innovative algorithms and applications of interval and soft computing in
knowledge processing are reported in Chapters 4 to 9. Specifically, Chapter 4
discusses knowledge processing methods related to interval linear algebra.
Chapter 5 investigates interval function approximation. Chapter 6 presents
an interval decision-making system. Chapter 7 studies interval-valued ma-
trix games. Chapter 8 extends graph algorithms for interval-weighted graphs.
Chapter 9 uses intervals in probabilistic studies. In Chapter 10, we present a
standards-based object-oriented interval computing environment in C++. The

Preface VII

entire software package is available at http://www.cs.uca.edu/interval/.
Although these independent chapters cover different topics, there is some over-
lap. Each chapter is self-contained, but we reference other chapters as appro-
priate. By collecting our research results into a single volume, we unify and
make accessible previously published work.

This book only introduces some initial applications of interval methods in
knowledge processing. We sincerely hope to see more fruitful and significant
results in both of theory and application in the future.

We would like to express our great appreciations to all co-authors of
this volume. Hu, especially, would also like to acknowledge the US National
Science Foundation for the grant awards of NSF/CISE/CCF-0202042 and
NSF/CISE/CCF-0727798.

University of Central Arkansas, Conway, USA Chenyi Hu
University of Louisiana, Lafayette, USA Ralph Baker Kearfott
University of Houston-Downtown, Houston, USA André de Korvin
University of Texas, El Paso, USA Vladik Kreinovich

http://www.cs.uca.edu/interval/

Contents

Preface . V

List of Contributors . XI

1 Fundamentals of Interval Computing
Ralph Baker Kearfott, Chenyi Hu . 1

2 Soft Computing Essentials
Andre de Korvin, Hong Lin, and Plamen Simeonov 13

3 Relations Between Interval Computing and Soft Computing
Vladik Kreinovich . 75

4 Interval Matrices in Knowledge Discovery
Chenyi Hu, R. Baker Kearfott . 99

5 Interval Function Approximation and Applications
Chenyi Hu, Ling T. He, Shanying Xu . 119

6 Interval Rule Matrices for Decision Making
Chenyi Hu . 135

7 Interval Matrix Games
W. Dwayne Collins, Chenyi Hu . 147

8 Interval-Weighted Graphs and Flow Networks
Chenyi Hu, Ping Hu . 167

9 Arithmetic on Bounded Families of Distributions: A DEnv
Algorithm Tutorial
Daniel Berleant, Gary Anderson, Chaim Goodman-Strauss 183

X Contents

10 IntBox: An Object-Oriented Interval Computing Software
Toolbox in C++
Michael Nooner, Chenyi Hu . 211

Index . 229

List of Contributors

Chenyi Hu
University of Central Arkansas
201 Donaghey Avenue
Conway, AR 72035, USA
chu@uca.edu

Ralph Baker Kearfott
University of Louisiana at Lafayette
Box 4-1010
Lafayette, LA 70504-1010, USA
rbk@louisiana.edu

Andre de Korvin
University of Houston-Downtown
One Main Street
Houston, TX 77002, USA
dekorvina@uhd.edu

Vladik Kreinovich
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
vladik@utep.edu

Gary Anderson
University of Arkansas at Little Rock
2801 S. University Avenue
Little Rock, AR 72204, USA
gtanderson@ualr.edu

Daniel Berleant
University of Arkansas at Little Rock
2801 S. University Avenue
Little Rock, AR 72204, USA
jdberleant@ualr.edu

W. Dwayne Collins
Hendrix College
1600 Washington Avenue
Conway, AR 72032, USA
collins@hendrix.edu

Chaim Goodman-Strauss
University of Arkansas at Fayetteville
Fayetteville, AR 72701, USA
strauss@uark.edu

Ling T. He
University of Central Arkansas
201 Donaghey Avenue
Conway, AR 72035, USA
LingHe@uca.edu

Ping Hu
University of Central Arkansas
201 Donaghey Avenue
Conway, AR 72035, USA
PHu@uca.edu

Hong Lin
University of Houston-Downtown
One Main Street
Houston, TX 77002, USA
linh@uhd.edu

XII List of Contributors

Michael Nooner
University of Central Arkansas
201 Donaghey Avenue
Conway, AR 72035, USA
MNooner@uca.edu

Plamen Simeonov
University of Houston-Downtown
One Main Street

Houston, TX 77002, USA
SimeonovP@uhd.edu

Shanying Xu
Academy of Mathematics and
Systems Science
Chinese Academy of Sciences,
Beijing, China
xsy@iss.ac.cn

1

Fundamentals of Interval Computing

Ralph Baker Kearfott1 and Chenyi Hu2

1 Department of Mathematics, University of Louisiana at Lafayette, Box 4-1010,
Lafayette, LA 70504-1010, USA. rbk@louisiana.edu

2 Department of Computer Science, University of Central Arkansas, 201 Donaghey
Avenue, Conway, AR 72035-0001, USA. chu@uca.edu

This volume deals, generally, with innovative techniques for automated knowl-
edge representation and manipulation when such knowledge is subject to sig-
nificant uncertainty, as well as with automated decision processes associated
with such uncertain knowledge. Going beyond traditional probability theory
and traditional statistical arguments, the techniques herein make use of in-
terval techniques, of fuzzy knowledge representation and fuzzy logic, and of
the combination of interval techniques with fuzzy logic and with probability
theory.

In this chapter, we introduce interval computing, giving reasons for its
development and references to historical work. We also preview the remainder
of the book, contrasting the underlying philosophy and range of application
with prevalent views among experts in interval computation.

1.1 Intervals and Their Representation

By the term interval we mean the set of all real numbers between specified
lower and upper bounds, a and b (i. e. {x|a ≤ x ≤ b; a, b, x ∈ R}). Intervals
are denoted in various ways within the interval computations community. For
examples, see [39, 18, 3, 40, 23]. In this book, we use lowercase boldface letters
to denote intervals. For example, x is an interval. The lower and upper bounds
of an interval x are specified as x and x, respectively. Hence, x = [x, x]. We
call this the endpoint representation of an interval.3 An empty interval - an
interval that contains no real numbers - is simply the empty set ∅. Various
computer representations are possible in implementations for ∅.

The midpoint of a nonempty interval is the algebraic average of its lower
and upper bounds. The width of a nonempty interval is the difference between

3 Alternate representations include midpoint-radius representation and tolerance
representation. We discuss midpoint-radius (or midpoint-width) representation
below.

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 1, c© Springer-Verlag London Limited 2008

rbk@louisiana.edu
chu@uca.edu

2 Ralph Baker Kearfott and Chenyi Hu

its upper and lower bounds. We use the uppercase letters M and W in sub-
scripts to specify the midpoint and width of a nonempty interval, respectively.
The midpoint and width of the interval x = [x, x] are xM = (x + x)/2 and
xW = x − x, respectively. We define two unary interval operators, m() and
w(), that return the midpoint and width of an interval, respectively; that is,
m(x) = xM and w(x) = xW .

The lower bound of an interval is the same as the difference between its
midpoint and one-half of its width. Similarly, the upper bound of an interval
is the same as the sum of its midpoint and one-half of its width. We can
represent an interval by its midpoint and width. This is called the midpoint-
width representation of an interval. For example, the interval x = [x, x], in
its midpoint-width representation, is x = [xM − xW /2, xM + xW /2]. If the
lower and upper bounds of an interval are the same, we say that is a trivial
or degenerate or a thin interval. Obviously, the width of a degenerate interval
is zero.

The above discussion can be extended to interval vectors and interval ma-
trices. The entries of an interval vector or matrix are intervals. To unambigu-
ously distinguish point vectors and interval vectors, and point matrices and
interval matrices, in this book we use boldface letters to specify intervals. We
use boldface lowercase letters with arrows on top to denote interval vectors.
For example, ~x is an interval vector. Its lower and upper bounds are ~x and ~x,
respectively. We omit the top arrow when it would not cause confusion. For
example, ~x (or x) with

~x =
(

[1, 2]
[3, 4]

)
can denote an interval vector.

Uppercase letters are used to denote matrices. Boldface uppercase letters
denote interval matrices. For example, A is an interval matrix, and its lower
and upper bounds are A and A, respectively. The midpoint and width of a
nonempty interval vector (or matrix) are real vectors (or matrices). Therefore,
A with

A =
(

[1, 2] [3, 4]
[5, 6] [7, 8]

)
can denote an interval matrix, and its lower and upper bounds are point
matrices

A =
(

1 3
5 7

)
,

A =
(

2 4
6 8

)
.

The notation we adopt in this volume has been recommended (but not
required) for the journal Reliable Computing and has been proposed as a
voluntary standard (although not universally adopted).

1 Fundamentals of Interval Computing 3

1.2 Origins and Reason for Development

Interval computing, specifically interval arithmetic, began primarily as a
means of automating error analysis during the process of computing float-
ing point approximations to solutions of scientific problems. The basic idea
is that the true value x of some quantity appearing in some computation is
not known exactly, but it is bounded in some interval x, x ∈ x. In exact
arithmetic, each operation4 �, � ∈ {+,−,×,÷, etc.} is formally defined on
these intervals in such a way that the result x� y is equal to the set x� y as
x ranges over all values in x and y ranges over all values in y; that is,

x� y = {x� y | x ∈ x and y ∈ y} . (1.1)

For example, let x = [1, 2] and y = [−3,−1]. We then have x+y = [−2, 1],
x− y = [2, 5], x ∗ y = [−6,−1], and x÷ y = [−2,−1/3].

Using the basic interval arithmetic operations, we can perform linear al-
gebra operations such as interval vector dot products, interval matrix-vector
multiplications, interval matrix-matrix operations, etc. We will discuss and
apply these in later chapters.

In addition to binary arithmetic operations, logic and set operations can
also be performed on intervals. For example, [0, 2] ⊂ [1, 2] returns false, [0, 2]∪
[1, 3] = [0, 3], and [0, 2] ∩ [1, 3] = [1, 2]. With these additional features of
interval computing, we develop new algorithms to solve problems that are
hard to solve in classical point arithmetic. By extending interval operations
further with fuzzy logic and probability theory, this book presents additional
algorithms for knowledge processing, especially in handling uncertainty.

Most modern literature on interval arithmetic is traceable to [36], al-
though there are earlier independent works, such as [53], that are often over-
looked but contain many, if not most, of the developments in [36]; some of
these early works are available at http://www.cs.utep.edu/interval-cmp/
early.html.

There is extensive literature on interval computations. Classic introduc-
tions are the books [37], [38], and [2] and the latter’s translation to English
[3]. A numerical analysis textbook that introduces interval arithmetic in ap-
propriate places is [41]. An introduction to interval analysis with numerous
computational examples within the matlab environment, as well as discussion
of the most successful applications, appears in [39]. An early, carefully written
reference on interval arithmetic and its implementation on actual machines is
[29].

4 In actual implementations, an operation � can include not only the four elemen-
tary arithmetic operations but also all of the usual preprogrammed functions, such
as sin, exp, etc., that are available in compiler libraries for scientific programming
languages.

http://www.cs.utep.edu/interval-cmp/early.html
http://www.cs.utep.edu/interval-cmp/early.html

4 Ralph Baker Kearfott and Chenyi Hu

1.3 Computer Implementation and Software

In practice, (1.1) is not achievable exactly in floating point arithmetic on
computers. However, on modern computers (and, in particular, on those for
which the IEEE 754 binary floating point standard is implemented), directed
rounding can be used, so that instead of the exact value x � y defined by
(1.1), an interval z is computed such that

{x� y | x ∈ x and y ∈ y} ⊆ z

and such that the complement of {x� y | x ∈ x and y ∈ y} in z is very small
(on the order of the roundoff unit). In this way, if intervals {x1, . . . ,xn} are
substituted for the variables {x1, . . . ,xn} in an expression E(x1, . . . , xn), and
E is evaluated using interval arithmetic, then the interval result E(x1, . . . ,xn)
contains the range

{E(x1, . . . , xn) | xi ∈ xi, 1 ≤ i ≤ n} , (1.2)

that is, completion of a computation using interval arithmetic with directed
rounding (also called outwardly rounded interval arithmetic), yielding a re-
sult z, provides a mathematically rigorous proof5 that the actual result is
contained in z.

There are numerous software tools and applications for interval comput-
ing written in mainstream languages, such as C, C++, Fortran, Java, Lisp,
as well as in computational algebra systems, such as Maple, matlab, and
Mathematica. For example, intlab [49] is an interval computing toolbox
in matlab. An interval software development environment [22] is available
in FORTRAN-90. Software in C++ supporting interval arithmetic includes
the Boost C++ source libraries (http://www.boost.org/libs/numeric/
interval/doc/interval.htm), filib++ [31], PROFIL/BIAS [26, 27], Sun’s
Studio C++, and Fortran [52], an object-oriented interval matrix computing
environment [43], and others. Interval arithmetic is slated to be embodied in
a technical report for the next C++ standards document [11]. We present an
object-oriented interval toolbox in C++, named “IntBox,” in Chapter 10 of
this book.

Application software packages using interval computing include COSY-
Infinity [9, 14] (and also http://bt.pa.msu.edu/index_cosy.htm) that is
based on Taylor models and interval methods for validated solution of ordinary
differential equations, quadrature, and range bounding, CGAL (http://www.
cgal.org/) that makes geometric computations robust and efficient, GlobSol
[23, 25] that finds reliable solutions for global nonlinear optimization problems
with interval analysis, iCOs for interval constraint satisfaction and global
optimization http://ylebbah.googlepages.com/icos, and others, both old
and new. For additional applications, see [39].

5 Assuming the computer is programmed correctly and is not malfunctioning.

http://www.boost.org/libs/numeric/interval/doc/interval.htm
http://www.boost.org/libs/numeric/interval/doc/interval.htm
http://bt.pa.msu.edu/index_cosy.htm
http://www.cgal.org/
http://www.cgal.org/
http://ylebbah.googlepages.com/icos

1 Fundamentals of Interval Computing 5

1.4 Present Uses of Interval Arithmetic

People soon discovered that interval computations can be applied in more
situations than merely error analysis in existing floating point algorithms.
The fact that the result of a computation carried out with outwardly rounded
interval arithmetic rigorously bounds the range of the computation is useful
in various contexts. On a mathematical level, such uses include the following:

• rigorously bounding the ranges of functions over wide domains;
• including bounded uncertainties in the inputs in models;
• rigorously proving existence and uniqueness of solutions to systems of

equations using computational versions of classical fixed point theorems.

As evidenced by the ubiquitous appearance of Lipschitz constants and
moduli of continuity in classical hard analysis, bounding ranges of a quan-
tity over sizable domains is an important computation in various contexts.
Furthermore, using preexisting interval software and modern programming
languages, bounding such ranges reduces to programming the computation of
the quantity. Within this framework, computations that are equivalent to or
sharper than using moduli of continuity or Lipschitz constants can be carried
out automatically.

Classical fixed point theorems, such as the Brouwer fixed point theorem,
state that if the image of a region x under an operator G is contained in x,
then there is an x ∈ x such that G(x) = x. With interval arithmetic, the range
of G can be bounded, and the hypotheses of the theorem are satisfied if the
interval evaluation of G over x is contained in x. Furthermore, although such
classical theorems can be applied directly, interval Newton methods, with a
theoretical basis in classical fixed point theory, have been extensively devel-
oped to both compute narrow bounds on the solutions to systems of equations
and to prove existence and uniqueness of those solutions within those bounds.
For information on such methods, see, in addition to the general references
on interval computations we have cited earlier, [40], [23], and [18]. The book
[40] contains a thorough treatment of interval Newton methods, and [23] and
[18] treat such methods in the context of algorithms for global optimization.

1.5 Pitfalls

Speed and sharpness were issues early in the study of interval methods, and
there has been considerable discussion of these issues in the literature. How-
ever, present software implementations, using optimizing (in-lining) compil-
ers and operator overloading, achieve, averaged over many operations, speed
within a factor of 5 of hardware floating point operations, and some imple-
mentations within the compiler itself achieve interval evaluation that is, on
average, less than a factor of 2 slower than floating point evaluations for some

6 Ralph Baker Kearfott and Chenyi Hu

of the standard functions. Such speed is usually not the determining factor in
whether to use interval computations.

Similarly, there has been significant discussion and development related to
making the result intervals as tight as possible. In particular, many existing
software systems today compute an interval z that is the narrowest machine-
representable interval that contains the exact range as defined in (1.2) when
� ∈ {+,−,×,÷}; likewise, libraries for interval evaluation of the standard
functions are also of high quality in this sense. Thus, tightness of the basic
operations and interval evaluations of standard functions are not primary
issues in deciding whether to apply interval computations.

The following pitfalls are more significant when designing applications with
interval computations.

1.5.1 Interval Dependency

One major pitfall in interval computations is commonly termed interval de-
pendency . Interval dependency is most easily illustrated by examining the
subtraction operation: If x = [x, x] and y = [y, y], then the exact range x−y
happens to be

x− y = [x− y, x− y]. (1.3)

However, suppose, say, x = [−1, 1] is interpreted to represent some specific
real number x ∈ [−1, 1] but unknown other than that it lies in [−1, 1]. Then
x − x = 0, but if the computer encounters the expression x − x (without
simplification) and substitutes [−1, 1] for both instances of x, it obtains

[−1, 1]− [−1, 1] = [−2, 2]. (1.4)

Observe that [−2, 2] does contain the range of f(x) = x − x as x ranges
over [−1, 1], but it does not sharply bound the range. The “dependency” is
from the fact that the computation (1.4) assumes implicitly that the quantity
in the first instance of [−1, 1] varies independently from the quantity in the
second instance of [−1, 1] whereas, in fact, the two values are correlated or
“dependent.” Observe, however, that [−2, 2] is the exact range of g(x, y) =
x− y as x ranges over [−1, 1] and y ranges over [−1, 1].

Due partly to the interval dependency phenomenon, traditional floating
point algorithms can seldom be converted to successful interval algorithms
(that rigorously bound roundoff error or provide useful bounds on ranges) by
simply replacing floating point numbers by intervals; instead, intervals need
to be introduced in appropriate ways, and new algorithms appropriate for
interval computation are developed.

One property of interval ranges that ameliorates interval dependency is
that the amount of overestimation (i. e., the sum of the differences between the
endpoints of the actual range and the interval arithmetic evaluation) decreases
proportionally to the widths of the input intervals. In fact, for continuously
differentiable quantities, the bounds on the range can be computed in such

1 Fundamentals of Interval Computing 7

a way that the decrease is proportional to the squares of the widths of the
input intervals; in special circumstances, bounds can even be computed with
overestimation proportional to even higher powers of the widths of the input
intervals. Thus, interval computations give locally tight bounds on the ranges
of computed quantities.

1.5.2 Computational Complexity

Computational complexity and similar theoretical issues arise in interval algo-
rithms. For instance, if A is a matrix with interval entries, b is a vector with
interval entries, and the individual entries in A and b are assumed to vary
independently, then it is known that, in general, finding an interval vector
sharply bounding the solution set

{x | Ax = b for some A ∈ A and b ∈ b} (1.5)

is an NP-hard problem. (Such results are collected in [28].) However, there
are many algorithms that successfully compute usefully narrow bounds to the
solution sets to even large linear systems; as one of many examples of success,
see [42]. Furthermore, there is general software that is at least moderately suc-
cessful at handling large, sparse systems of linear equations within a friendly
user environment: the matlab toolbox intlab (see [48, 19]).

1.5.3 Problems with Coordinate Systems

Actual ranges of quantities as input values range over intervals are seldom
sets of the form

{(x1, . . . , xn) | xi ∈ [xi, xi] for 1 ≤ i ≤ n} . (1.6)

(Such sets are commonly termed boxes or interval vectors.) For instance, the
image of the vector-valued function F (x, y) = (x+y, x−y)T is the skewed par-
allelogram depicted in Figure 1.1, whereas the smallest interval vector contain-
ing this range is the substantially larger vertically oriented box in Figure 1.1.
This problem can be severe in interval methods for bounding the solution
sets to initial value problems for systems of ordinary differential equations,
where it is known as the wrapping effect (see, for instance, [38]). It even is
a significant problem in branch-and-bound methods for global optimization,
where excessive subdivision of a domain may occur if the proper coordinate
system is not used.

The wrapping effect has been, to a large extent, successfully ameliorated
for initial value problems, such as in the COSY system [10]. In general, a fix is
to somehow use an appropriate change of coordinates, as is proposed in [24].

8 Ralph Baker Kearfott and Chenyi Hu

(1.1,0.9)

(−0.9,−1.1)

(1.1,1.1)
(0.9,1.1)

Actual range

Interval enclosure
of range

(−1.1,−1.1)

(−1.1,−0.9)

Fig. 1.1. Illustration of overestimation due to the choice of coordinates.

1.5.4 Successes Nonetheless

The concept of mathematical rigor in computer arithmetic is appealing, some-
thing that has caused enthusiasts to make excessive claims about its applica-
bility and usefulness in the past. These claims, in turn, have stimulated naive
experimentation, leading to disillusionment with the technology within the
scientific computing community as a whole. However, with software crafted
to utilize the strengths and avoid the weaknesses of interval computations,
important problems are increasingly solved with interval techniques but not
other methods. For instance, certain chemical kinetics equilibrium problems
[50, 51, 15, 16] have been solved correctly with interval techniques, whereas
earlier floating techniques had given approximate solutions that led to erro-
neous conclusions about the underlying physical problem. There have been
similar successes in solving systems of equations arising in robotics [20, 30].
Inroads have even been made in the computation of parameters for bound-
ary value problems [33, 32, 34, 35]. For additional details on these and other
applications, see [39].

1.6 Context of This Work

In this volume, we present novel techniques for new and improved algorithms
in knowledge engineering. In contrast to much work utilizing interval arith-
metic, the focus here is not on rigor and mathematical theorem proving but

1 Fundamentals of Interval Computing 9

on efficient ways of encompassing uncertain inputs to compute bounds on
outputs. Along these lines, intervals are combined heuristically with methods
from probability theory and other methods that, in their raw form, cannot
be made rigorous by naive application of interval arithmetic. A guiding prin-
ciple in the applications treated in this volume is that the real-world data
often provide interval inputs to the problem and that the data should be so
represented.

In some of the problems tackled in this volume, traditional statistical mod-
els have previously been used, but interval techniques are used creatively for
improved modeling and predictive power. An example of this, appearing in
Section 4.5 of Chapter 4, is the use of interval data to reduce the raw noisy
data in stock market indices. This data reduction is combined with an innova-
tive view6 of interval values of the singular value decomposition and principal
component analysis to both simplify and enhance the predictive power of the
model. In this work and Chapter 5, intervals and interval arithmetic are used
to describe variability and uncertainty in the model inputs and to divine re-
lationships between the model inputs and model outputs; the model outputs
are intervals that approximate the range of behavior over the input intervals
but are not claimed to rigorously enclose that range.7 This is reasonable in
view of the fact that real-world models often have uncertainties that cannot
be quantified, so proof that an exact result is rigorously enclosed may not
make sense.

In contrast, the traditional literature on interval enclosures for eigenvalue-
and singular-value-decompositions assumes that the problem is specified ex-
actly (with a point matrix), and the goal is to compute mathematically rig-
orous bounds on the exact solutions to this point problem. Examples of this
approach are in [21, 4, 5, 6, 7, 1], and [44, 45, 8, 54, 13] in applications to
partial differential equations. Although there has been some work, such as
[46, 47, 12, 13], on bounding the range of eigenvalues of an interval matrix,
rigorous enclosure of the range (often called outer enclosures) is problematical
for general matrices. For this reason, when we adopt a statistician’s philoso-
phy and employ intervals to reduce noisy data and obtain approximate bounds
on ranges, we do not obtain mathematically rigorous results, but we may get
reasonable “guesses” in problems that otherwise would be intractable or for
which rigorous bounds are not meaningful. Furthermore, using interval tech-
nology, we obtain new approaches that compare favorably with traditional
statistical methods.

Continued research on the methods in this volume should lead to additional
mathematical rigor and explanations for the reasons the models appear to
work so well.

6 But similar to that in [17].
7 Nonetheless, measures of quality of the interval result, in terms of how close it is

to the exact range, are discussed.

10 Ralph Baker Kearfott and Chenyi Hu

References

1. Aberth, O., Schaefer, M.J.: Precise matrix eigenvalues using range arithmetic.
SIAM Journal on Matrix Analysis and Applications 14(1), 235–241 (1993)

2. Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung. Springer-
Verlag, Berlin, (1974)

3. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic
Press Inc., New York (1983)

4. Alefeld, G.: Componentwise inclusion and exclusion sets for solutions of
quadratic equations in finite-dimensional spaces. Numerische Mathematik 48(4),
391–416 (1986)

5. Alefeld, G., Spreuer, H.: Iterative improvement of componentwise errorbounds
for invariant subspaces belonging to a double or nearly double eigenvalue. Com-
puting 36, 321–334 (1986)

6. Behnke, H.: Inclusion of eigenvalues of general eigenvalue problems for matrices.
In: U. Kulisch, H.J. Stetter (eds.) Scientific Computation with Automatic Result
Verification, Computing. Supplementum, Vol. 6, pp. 69–78. Springer, New York
(1988)

7. Behnke, H.: Bounds for eigenvalues of parameter-dependent matrices. Comput-
ing 49(2), 159–167 (1992)

8. Behnke, H., Mertins, U.: Bounds for eigenvalues with the use of finite elements.
In: U. Kulisch, R. Lohner, A. Facius (eds.) Perspectives on Enclosure Methods:
GAMM-IMACS International Symposium on Scientific Computing, Computer
Arithmetic and Validated Numerics, September 2000, Karlsruhe, Germany, 119–
132. Kluwer Academic Publishers, Amsterdam (2001)

9. Berz, M., Makino, K., Shamseddine, K., Hoffstätter, G.H., Wan, W.: COSY
INFINITY and its applications to nonlinear dynamics. In: M. Berz, C. Bischof,
G. Corliss, A. Griewank (eds.) Computational Differentiation: Techniques, Ap-
plications, and Tools, 363–365. SIAM, Philadelphia (1996)

10. Berz, M.: COSY INFINITY web page http://cosy.pa.msu.edu/cosy.pa.msu.

edu (2000)
11. Brönnimann, H., Melquiond, G., Pion, S.: A proposal to add interval arithmetic

to the C++ Standard Library. Technical proposal N1843-05-0103, CIS, Brooklyn
Polytechnic University, S Brooklyn (2005)

12. Chen, S., Qiu, Z., Liu, Z.: A method for computing eigenvalue bounds in struc-
tural vibration systems with interval parameters. Computers and Structures
51(3), 309 (1994)

13. Chen, S., Qiu, Z., Liu, Z.: Perturbation method for computing eigenvalue bounds
in structural vibration systems with interval parameters. Communications in
Applied Numerical Methods 10(2), 121–134 (1994)

14. Corliss, G.F., Yu, J.: Testing COSY’s interval and Taylor model arithmetic.
In: R. Alt, A. Frommer, R.B. Kearfott, W. Luther (eds.) Numerical Software
with Result Verification: Platforms, Algorithms, Applications in Engineering,
Physics, and Economics, Lectures Notes in Computer Science, No. 2992, pp.
91–105. Springer, Heidelberg (2004)

15. Gau, C.Y., Stadtherr, M.A.: New interval methodologies for reliable chemical
process modeling. Computers and Chemical Engineering 26, 827–840 (2002)

16. Gau, C.Y., Stadtherr, M.A.: Dynamic load balancing for parallel interval-
Newton using message passing. Computers and Chemical Engineering 26, 811–
815 (2002)

http://cosy.pa.msu.edu/cosy.pa.msu.edu
http://cosy.pa.msu.edu/cosy.pa.msu.edu

1 Fundamentals of Interval Computing 11

17. Gioia, F., Lauro, C.N.: Principal component analysis on interval data. Compu-
tational Statistics 21(2), 343–363 (2006)

18. Hansen, E.R., Walster, W.: Global Optimization Using Interval Analysis, 2nd
ed. Marcel Dekker, New York (2003)

19. Hargreaves, G.I.: Interval analysis in MATLAB. Master’s thesis, Department of
Mathematics, University of Manchester (2002)

20. Jaulin, L., Keiffer, M., Didrit, O.,Walter, E.: Applied Interval Analysis. Springer-
Verlag, Berlin (2001)

21. Kalmykov, S.A.: To the problem of determination of the symmetric matrix
eigenvalues by means of the interval method. In: Numerical Analysis, Collect.
Sci. Works, pp. 55–59. Sov. Acad. Sci., Sib. Branch, Inst. Theor. Appl. Mech.,
Novosibirsk, USSR (1978) (in Russian)

22. Kearfott, R.B.: A Fortran 90 environment for research and prototyping of enclo-
sure algorithms for nonlinear equations and global optimization. ACM Trans-
actions on Mathematical Software 21(1), 63–78 (1995)

23. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Nonconvex Op-
timization and Its Applications. No. 13. Kluwer Academic, Norwell, MA (1996)

24. Kearfott, R.B.: Verified branch and bound for singular linear and nonlinear
programs: An epsilon-inflation process (April 2007), Submitted

25. Kearfott, R.B.: GlobSol User Guide. Optimization Methods and Software
(2008). Submitted

26. Knüppel, O.: PROFIL/BIAS - A fast interval library. Computing 53(3–4), 277–
287 (1994)

27. Knüppel, O.: PROFIL/BIAS v 2.0. Bericht 99.1, Technische Universität
Hamburg-Harburg, Harburg, Germany (1999). Available from http://www.ti3.

tu-harburg.de/profil_e

28. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations, Applied Optimiza-
tion, Vol. 10. Kluwer Academic, Norwell, MA (1998)

29. Kulisch, U.W., Miranker, W.L.: Computer Arithmetic in Theory and Practice.
Computer Science and Applied Mathematics. Academic Press Inc., New York
(1981)

30. Lee, D., Mavroidis, C., Merlet, J.P.: Five precision point synthesis of spatial
RRR manipulators using interval analysis. Journal of Mechanical Design 126,
842–849 (2004)

31. Lerch, M., Tischler, G., Gudenberg, J.W.V., Hofschuster, W., Krämer, W.:
FILIB++, a fast interval library supporting containment computations. ACM
Transactions on Mathematical Software 32(2), 299–324 (2006)

32. Lin, Y., Stadtherr, M.A.: Advances in interval methods for deterministic global
optimization in chemical engineering. Journal of Global Optimization 29, 281–
296 (2004)

33. Lin, Y., Stadtherr, M.A.: Lp strategy for interval-Newton method in deter-
ministic global optimization. Industrial & Engineering Chemistry Research, 43,
3741–3749 (2004)

34. Lin, Y., Stadtherr, M.A.: Locating stationary points of sorbate-zeolite potential
energy surfaces using interval analysis. J. Chemical Physics, 121, 10159-10166
(2004)

35. Lin, Y., Stadtherr, M.A.: Deterministic global optimization of molecular struc-
tures using interval analysis. J. Computational Chemistry 26, 1413–1420 (2005)

http://www.ti3.tu-harburg.de/profil_e
http://www.ti3.tu-harburg.de/profil_e

12 Ralph Baker Kearfott and Chenyi Hu

36. Moore, R.E.: Interval arithmetic and automatic error analysis in digital com-
puting. Ph.D. dissertation, Department of Mathematics, Stanford University,
Stanford, CA (1962)

37. Moore, R.E.: Interval Analysis. Prentice–Hall, Upper Saddle River, NJ (1966)
38. Moore, R.E.: Methods and Applications of Interval Analysis. Society for Indus-

trial and Applied Mathematics, Philadelphia (1979)
39. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval algorithms

and their applications with INTLAB: a MATLAB toolkit. Submitted
40. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of

Mathematics and Its Applications, Vol. 37. Cambridge University Press, Cam-
bridge (1990)

41. Neumaier, A.: Introduction to Numerical Analysis. Cambridge University Press,
Cambridge (2001)

42. Neumaier, A., Pownuk, A.: Linear systems with large uncertainties, with appli-
cations to truss structures. Reliable Computing 13, 149–172 (2007)

43. Nooner, M., Hu, C.: A computational environment for interval matrices. In:
R.L. Muhanna, R.L. Mullen (eds.) Proceedings of 2006 Workshop on Reliable
Engineering Computing, pp. 65–74. Georgia Tech. University, Savanna (2006).
http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html

44. Oishi, S.: Fast enclosure of matrix eigenvalues and singular values via rounding
mode controlled computation. Linear Algebra and its Applications 324(1–3),
133–146 (2001)

45. Plum, M.: Computer-assisted enclosure methods for elliptic differential equa-
tions. Linear Algebra and its Applications 324(1–3), 147–187 (2001)

46. Rohn, J., Deif, A.: On the range of eigenvalues of an interval matrix. Computing
47(3–4), 373–377 (1992)

47. Rohn, J.: Interval matrices: Singularity and real eigenvalues. SIAM Journal on
Matrix Analysis and Applications 14(1), 82–91 (1993)

48. Rump, S.M.: INTLAB-INTerval LABoratory. In: T. Csendes (ed.) Developments
in Reliable Computing: Papers presented at the International Symposium on
Scientific Computing, Computer Arithmetic, and Validated Numerics, Vol. 5(3),
pp. 77–104. Kluwer Academic, Norwell, MA (1999)

49. Rump, S.M.: INTLAB - INTerval LABoratory (1999-2008) http://www.ti3.

tu-harburg.de/rump/intlab/

50. Stadtherr, M.A.: Interval analysis: Application to phase equilibrium problems.
In: A. Iserles (ed.) Encyclopedia of Optimization. Kluwer Academic, Norwell,
MA (2001)

51. Stadtherr, M.A.: Interval analysis: Application to chemical engineering design
problems. In: A. Iserles (ed.) Encyclopedia of Optimization. Kluwer Academic,
Norwell, MA (2001)

52. Sun: Sun studio math libraries (1994-2007). Available from http:

//developers.sun.com/sunstudio/documentation/libraries/math_

libraries.jsp

53. Sunaga, T.: Theory of interval algebra and its application to numerical analysis.
RAAG Memoirs 2, 29–46 (1958)

54. Wieners, C.: A parallel Newton multigrid method for high order finite elements
and its application on numerical existence proofs for elliptic boundary value
equation. Zeitschrift für Angewandte Mathematik und Mechanik 76, 171–176
(1996)

http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html
http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/
http://developers.sun.com/sunstudio/documentation/libraries/math_libraries.jsp
http://developers.sun.com/sunstudio/documentation/libraries/math_libraries.jsp
http://developers.sun.com/sunstudio/documentation/libraries/math_libraries.jsp

2

Soft Computing Essentials

Andre de Korvin, Hong Lin, and Plamen Simeonov

Department of Computer and Mathematical Sciences, University of Houston,
Downtown, One Main Street, Houston, Texas 77002, USA. dekorvina@uhd.edu

The main purpose of this chapter is to give an overview of some of the soft
computing methods that are currently applied to a variety of problems. One
of the characteristics of soft computing methods is that they are typically used
in problems where mathematical models are not available or are intractable
or too cumbersome to be viable. Another characteristics is that uncertainty
inherent in many situations under study is taken into account rather than
ignored. Often a human expert has partial knowledge and it is this partial
knowledge (as opposed to complete knowledge) that soft computing uses to
advantage. Another characteristic is that soft computing often provides a good
solution as opposed to an optimal solution. In this chapter we present some of
the mainstream methods of soft computing: Neural Nets, Fuzzy Logic, Neuro-
Fuzzy Systems, The Theory of Evidence, Rough Sets, and Genetic Algorithms.

2.1 Neural Nets

A large number of structures have been used and we will highlight a small
sample of the great variety of networks used. For a small fraction of the
material available for neural nets we refer the reader to [6], [8], [11], [5], [9],
[23], and [39]. A neural net is a set of neurons. Each neuron is as shown in
Figure 2.1.

P

P

P

1

n

2 OfW

W

W1

2

3

Σ

Fig. 2.1

An n-dimensional input (p1, . . . , pn)T is provided. The first component of
the neuron carries a weighted average called the net input:

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 2, c© Springer-Verlag London Limited 2008

dekorvina@uhd.edu

14 Andre de Korvin, Hong Lin, and Plamen Simeonov

N =
n∑

i=1

wipi.

The second neuron transforms N into the output

O = f(N).

We refer to f as the transfer function. Commonly used transfer functions are

f(N) = Hardlim(N) =
{

1 if N ≥ 0
0 otherwise,

f(N) = Hardlims(N) =
{

1 if N ≥ 0
−1 otherwise,

f(N) = LogSig(N) = 1/(1 + e−N).

Often an additional input of 1 is provided as well as an additional weight
called the bias. The net input is then given by

N =
n∑

i=1

wipi + b,

where b is the bias. The set of neurons forming a neural net is often organized
into layers as shown for example in Figure 2.2.

P

P

1

n

O

O

O

1

2

3

Fig. 2.2

In Figure 2.2 an n-dimensional input generates a 3-dimensional output.
A commonly used notation for weights is wl

i,j , which stands for the weight
associated with the i-th neuron at layer l receiving input from the j-th neuron
at layer l − 1. So, for example, w2

1,1, w2
1,2, and w2

1,3 would be the weights for
the first neuron (i.e. the top one) at layer 2. A similar notation holds for the
biases. Thus b2

2 would be the bias of the second neuron (i.e., the bottom one)
at layer 2. Under supervised learning, a set of inputs with desired targets
is given {(p1, t1), . . . , (pn, tn)}. Here p1, . . . , pn denote inputs (thus, pi is the
i-th input vector) and t1, . . . , tn denote the desired targets for these inputs.
Initially the weights and biases are set somewhat arbitrarily (usually to small
random numbers) and are then continuously adjusted in terms of the error
produced. This process is called learning under supervision.

We now outline a small sample of existing neural net structures.

2 Soft Computing Essentials 15

2.1.1 Adaline

The Adaptive Linear Element (or Adaline) is the simplest example of a neural
net. It is shown in Figure 2.3.

Pn

Σ

P1 1

Wn

WW 0

O

target

error

Fig. 2.3

In Figure 2.3 we have one neuron and we have denoted its bias by w0. The
transfer function is taken to be the identity function O = f(N) = N . Thus,

O =
n∑

i=1

wipi + w0.

For each input (p1,q, . . . , pn,q)T we specify a target tq, q = 1, . . . , Q. For the
q-th input, the squared error is

Eq = (tq −Oq)2.

We would like to adjust the weights and the bias so as to minimize Eq. The
partial derivatives are

∂Eq

∂wi
= −2(tq −Oq)

∂Oq

∂wi
= −2(tq −Oq)pi,q.

In order to minimize Eq we take small steps opposite ∇Eq (the gradient of
Eq). If w1(0), . . . , wn(0), w0(0) are the initial values given to the weights and
the bias, the update from step k to step k + 1 is given by

wi(k + 1) = wi(k) + η(tq −Oq)pi,q

provided input pq = (p1,q, . . . , pn,q)T is presented at step k + 1. Another way
to write this is

4qwi(k) = η(tq −Oq)pi,q, 0 ≤ i ≤ n,

where 4qwi(k) denotes the change of weight wi at iteration k + 1 when the
q-th input is presented, tq−Oq is, of course, the error produced when the q-th
input is presented, and η is a small positive number.

The Adaline is trained by presenting the input from the training set many
times over and updating the weights as shown. Under certain conditions, it
can be shown that the weights and the bias will converge to values so that
specified inputs will produce outputs close to the specified targets.

16 Andre de Korvin, Hong Lin, and Plamen Simeonov

2.1.2 Adaptive Nets

Adaptive nets generalize the concept of neural nets in the sense that no weights
need to be involved in the computation of the output. Adaptive nets use
a training set to update parameters of adaptive nodes. An example of an
adaptive net is given in Figure 2.4.

P2

P1
O

O

6

7

4

3

5
7

6

b

a

input Layer2 outputLayer1

Fig. 2.4

Let xi,j denote the output produced by node j at layer i. The square nodes
4 and 7 produce an output depending on parameters a and b, respectively. The
basic idea is to set a and b to some initial values and then use the training set
to minimize the sum of squared errors. Let N(i) denote the number of nodes
at layer i. In Figure 2.4, N(0) = 2, N(1) = 3, and N(2) = 2. When input p
is presented, the corresponding error function is

Ep =
N(L)∑
i=1

(tpi − xp
L,i)

2.

Here L denotes the last layer, tpi denotes the specified target for p at neuron
i of the last layer, and xp

L,i denotes the output of that neuron. To simplify
notation we now omit the superscript p. Each sensitivity is defined as

El,i =
∂E

∂xl,i
.

We need to compute the gradient of E, ∇E, and then update the values of
the parameters by adding to the current parameter vector −η∇E, where η is
a small positive number. Let fi,j be the function giving the output for node
xi,j . In the example shown in Figure 2.4 we have

x1,3 = f1,3(p1, p2), x1,4 = f1,4(a, p1, p2), x1,5 = f1,5(p1, p2),
x2,6 = f2,6(x1,3, x1,4, x1,5), x2,7 = f2,7(b, x1,3, x1,4, x1,5),
O6 = x2,6, O7 = x2,7.

Furthermore,

∇E =
(

∂E

∂a
,
∂E

∂b

)T

2 Soft Computing Essentials 17

and

E2,i = −2(ti − x2,i),

E1,i =
∂E

∂x1,i
=
∑
m

∂E

∂x2,m

∂x2,m

∂x1,i
.

So, for our example, we have

E2,6 = −2(t6 − x2,6), E2,7 = −2(t7 − x2,7),

E1,i = E2,6
∂f2,6

∂x1,i
+ E2,7

∂f2,7

∂x1,i
, i = 3, 4, 5,

E0,i = E1,3
∂f1,3

∂pi
+ E1,4

∂f1,4

∂pi
+ E1,5

∂f1,5

∂pi
, i = 1, 2.

Thus,
∂E

∂a
=

∂E

∂x1,4

∂f1,4

∂a
= E1,4

∂f1,4

∂a

and similarly
∂E

∂b
= E2,7

∂f2,7

∂b
.

This completes the computation of ∇E and, therefore, the necessary updates
of a and b when input p is presented. This process is called backpropagation,
as the computation of the sensitivities proceeds from the last layer to the first
layer.

2.1.3 The Standard Backpropagation

The standard backpropagation typically refers to a special case of adaptive
nets where the parameters are weights and biases and the output produced
by neuron i at layer m, 0 ≤ n ≤ L, is given by

am
i = fm(nm

i).

Here fm refers to the transfer function at layer m (applied to each neuron at
layer m) and nm

i is the net input to neuron i at layer m. So,

nm
i =

∑
j

wm
i,ja

m−1
j + bm

i .

Here am−1
j refers to the output of neuron j at layer m− 1, wm

i,j is the weight
connecting neuron j at layer m− 1 to neuron i at layer m, and bm

i is the bias
of neuron i at layer m. The sensitivities El,i defined in the previous subsection
are now replaced by sensitivities defined as

ζm
i =

∂Ê

∂nm
i

,

18 Andre de Korvin, Hong Lin, and Plamen Simeonov

where Ê = eT (k)e(k) and e(k) is the error vector at layer L (i.e., the output
layer) committed on trial k. Using the chain rule in a manner somewhat similar
to that in Section 2.1.2, it can be shown that

ζL
i = −2(ti − aL

i)f ′L(nL−1
i),

ζm
i =

∑
j

wm+1
j,i f ′m(nm

i)ζm+1
j .

Thus, as in the previous subsection the sensitivities ζm+1
i , 0 ≤ m ≤ L − 1,

are computed starting from layer L and proceeding step by step to previous
layers. The updates are given by

wm
i,j(k + 1) = wm

i,j(k)− ηζm
i am−1

j ,

bm
i (k + 1) = bm(k)− ηζm

i .

As earlier, the inputs in the training set are presented over and over with
appropriate updates given above. If the positive number η is small enough,
the weights and biases will often converge (albeit somewhat slowly) to the
specified targets.

Multilayers nets are very flexible. For example, it can be shown that a
two-layer network can approximate any reasonable function where the transfer
function for the first layer is LogSig and the transfer for the second layer is
the identity function. This can be done with any degree of flexibility provided
there are enough neurons in the first layer. Even if there are enough neurons,
the net may not be able to approximate a given function if the weights and
biases are poorly chosen. The reason the net may not converge is that the
function to be minimized (i.e., the square of the error) would possibly be
highly nonlinear and not quadratic and hence have many local minima. It is
good practice to apply the algorithm outlined earlier starting with a number
of different initial conditions. It is also important to choose the training set
to be representative of the total dataset so that the net is able to successfully
generalize the input-output relation to that total dataset. Also, it is worth
pointing out that if too much flexibility is given to the net (i.e., too many
neurons), the net may generalize in a way not intended by the designer.

Another problem is that if the learning factor η is taken to be too large,
then convergence may fail. If η is taken too small, convergence may be too slow
for many applications. Some of the methods to address this problem include
the use of methods different from the steepest descent (e.g., the conjugate
gradient or the Levenberg-Marquard algorithms). Other methods use heuristic
techniques and we now mention a few of these. If the learning factor η is taken
too large, the weights and biases may oscillate and fail to converge. To reduce
the oscillations, one may use a first order filter. The filter works as follows: If
at time k the input is w(k), then the output is given by

y(k) = γy(k − 1) + (1− γ)w(k),

2 Soft Computing Essentials 19

where 0 ≤ γ ≤ 1. Note that
∑

y(k) = γ
∑

y(k−1)+(1−γ)
∑

w(k). Therefore,
E(y) = γE(y) + (1− γ)E(w), that is

E(y) = E(w).

Thus, the average value of y is equal to the average value of w. Now, the
variation of the weights and biases for the standard backpropagation is

4wm(k) = −ηζm(am−1)T ,

4bm(k) = −ηζm.

Thus, at time k the variations are redefined as

4wm(k) = γ4wm(k − 1)− (1− γ)ηζm(am−1)T ,

4bm(k) = γ4bm(k − 1)− (1− γ)ηζm.

The average values of the oscillations for the weights and the biases remain
the same but the amplitude is reduced. In fact, if γ is close to 1, 4wm and
4bm change very little from time k − 1 to time k.

Another heuristic technique to speed up convergence is to use a variable
learning rule. For example, if the squared error (over the entire training set)
increases by say more than 5%, then the update is discarded and the learning
value η is multiplied by some number less than 1, say by 0.75, and the momen-
tum γ is set to zero. If the squared error decreases after the weight update,
then the update is accepted and the learning rule is multiplied by a number
greater than 1, say by 1.5, and the momentum γ is reset to its original value.
Finally, if the squared error increases by less than 5%, the weight update is
accepted but the learning rule and the momentum are left unchanged. The
motivation to accept an increase in error (less than 5%) is to be able to ex-
plore different values for weights that may potentially lead to a better value
although initially the error is slightly higher. Multiplying the learning factor
by 1.5 speeds up the updates. On the other hand multiplying the learning
rule by 0.75 and setting the momentum to zero is mathematically expressing
caution about moving on the current path to an optimal point. It should be
pointed out that sometimes this approach fails to obtain convergence even
though the standard approach gives convergence. Most of the time, however,
this heuristic method yields faster convergence than the standard algorithm.

2.1.4 A Brief Overview of Additional Networks

In this subsection we present a brief overview of a few additional networks.

Counter-Propagation

The Counter-Propagation net is based on joining a Kohonen net with an
outstar net. Such a net is sketched in Figure 2.5.

20 Andre de Korvin, Hong Lin, and Plamen Simeonov

Pn

P1

W weightV weight
a

a

1

m

Kohonen
Net

Outstar
Net

Fig. 2.5

Counter-Propagation sets up a map between n-dimensional vectors and
m-dimensional vectors. The neurons at the Kohonen level are competitive.
This means that the neuron that has the highest net input is the only neuron
that fires and updates its weight. The other neurons have activation zero and
do not update their weights. All inputs are first normalized so the highest net
input corresponds to the cosine made by the input vector and the neuron’s
weight vector. Thus, the highest net input corresponds to the best match
in direction between the input and the neuron’s weight. If neuron i at the
Kohonen level is the winner, its weight vector is updated at time k by

vi(k) = vi(k − 1) + η(p− vi(k − 1))

if input p has been presented. The equilibrium position is vi = p, or more
accurately, vi converges to the center of gravity of inputs similar to p (i.e.,
inputs for which the same neuron i is the winner). If Oj denotes the output
of neuron j at the Kohonen level, then

Oj =
{

1 if neuron j is the winner
0 otherwise.

The second net is the outstar net. The update of the weights at that level is
given by

4wi,j = η′(ti − wi,j)Oj ,

where ti represents the i-th component of the desired target. At equilibrium,
wi,j = ti if j is the winning neuron. Since the transfer function is linear (i.e.,
f(N) = N) and Oj = 0 except for the winning neuron where Oj = 1, the
net input to neuron i is wi,j . So, ai = ti at equilibrium. The right target is
obtained at equilibrium. For further information on Counter-Propagation we
refer the reader to [9] and [39].

Adaptive Resonance Theory (ART)

We first discuss the outstar nets and instar nets and show how memory pat-
terns might be accessed. The outstar net is shown in Figure 2.6.

As shown, the neuron p sends an output of 1 to all the neurons in the next
layer. The weight vector is made equal to the specified output (a1, . . . , an)T .

2 Soft Computing Essentials 21

1

1
1P

a1
a

a

a

a

a

2

n

1

2

n

Fig. 2.6

The transfer function here is, of course, linear. Thus, when p is active, a
specified output vector is emitted by the output layer. The instar net is shown
in Figure 2.7.

l

input

Fig. 2.7

Here, neuron l is only activated by certain inputs. The input p needs to be
close enough to the weight vector of neuron l for neuron l to be activated. Often
instars are structured in a competitive layer, as the following net shows. In
order to access memory patterns a competitive layer is paired off with outstar
structures, as shown in Figure 2.8.

a1
a

a

a

a

a

2

n

1

2

n

competitive layerinput output

j

Fig. 2.8

Here, the vector input p is sent to the competitive layer. The competition
works as follows: The only neuron to be activated is the one where the net
input is the largest. The neuron is labeled j in Figure 2.8. Neuron j sends an
output of 1 to the next layer, where the weight vector (a1, . . . , an)T is chosen
to be the vector that one wishes to associate with p. This structure is thus able
to build an association between vectors. At the end of the process neurons
in the competitive layer will represent “clusters” (i.e., will be activated by
vectors falling into a similar class). One could slightly change the philosophy of
competition by having several winners (the weight of each winner determined

22 Andre de Korvin, Hong Lin, and Plamen Simeonov

by the strength of match between its weight vector and the input vector).
This then will allow the user “interpolation” to determine the output.

We now have the background to define the ART structure. Inputs can be
binary or analog. For simplicity, we focus the discussion on binary inputs. The
analog case is very similar in its broad features but technically more complex.
One problem with the classical backpropagation algorithm is that once a net
is trained, no incremental training is possible. If an additional (input, output)
pair is to be added to the training set at a later time, the network must be
retrained on the old training set with the new pair added. Using only the new
pair will train the net on that pair only and hence render the net invalid for
the initial training set. The ART structure is a complex dynamical structure
and, for this reason, we focus on the functional aspects of ART rather than
the mathematical machinery behind these functional aspects.

A common problem with nets using backpropagation is the stability or
plasticity problem: When an input comes in, should it be classified as similar
to previous inputs (i.e., does it belong to an established cluster or should a
new cluster be initiated for that input)? The ART structure is sketched in
Figure 2.9.

Input

Gain

i

j

Layer 1 Layer 2

Orienting
System

Fig. 2.9

Such a structure has limited capability to generalize from the training set.
Because of its capability to perform incremental training, it is useful in spatio-
temporal pattern recognition. The main idea is to use “resonance” between
Layer 1, the input layer, and Layer 2, the output layer. Layer 1 receives and
holds the input pattern. Layer 2 sends a response to Layer 1. If the response is
similar to the input, then there is a match. If response does not match them,
the two layers will resonate, seeking a match. If the input fails to match any
pattern stored in the neurons of Layer 2 within a specified tolerance, a new
stored pattern is formed. The orienting system disables the winning neuron
(labeled j) in Layer 2 and a new competition takes place without the winner.
A new match is attempted with the new winner. If the match does not take
place within the described tolerance, the orienting system disables the new
winner and a competition takes place without the two previous winners. If

2 Soft Computing Essentials 23

a no-point tolerance is met, the input is then viewed as new and an unused
neuron in Layer 2 stores its pattern. The connection from neurons in Layer 1
to a neuron of Layer 2 forms an instar net, with Layer 2 being a competitive
layer. Competition here has a slightly different meaning, in that normalization
of inputs does not take place. Some form of normalization is performed by
Layer 1. The connections from a neuron in Layer 2 to neurons in Layer 1 form
an outstar net. Denote by V the connections from Layer 1 to Layer 2 and by
W the connections from Layer 2 to Layer 1. The match takes place within
tolerance α if the following inequality holds:∑

i

wj,iai/
∑

i

ai > α.

Here, ai represents the activation of neuron i. The left-hand side of the in-
equality reflects how similar the (binary) input vector is to the response. If,
for example,

(a1, a2, a3, a4) = (1, 0, 1, 1)

and
(wj,1, wj,2, wj,3, wj,4) = (0, 0, 1, 1)

then the left-hand side is 2/3 (i.e., two out of the three 1’s of the input match
the response). The gain unit outputs 1 if at least one component of the input
is 1. Each neuron in Layer 1 has three inputs: the data input, the gain unit,
and the response sent by j. For a neuron in Layer 1 to output 1, at least
two of the three inputs must be 1 (the two-third rule). If any component in
the response is 1, the gain unit is forced to 0. Thus, a neuron in Layer 1 will
fire only if its input matches the response (both are 1). If the match test is
successful, the input is then associated with the winning neuron in Layer 2.
The W weights are updated. The V weights are similarly updated but with
normalization

wi,j(k + 1) = wi,j(k)ai,

vj,i(k + 1) =
Lwi,j(k)ai

L− 1 +
∑

k wk,jak
,

where L is some constant. Thus, vj,i is a scaled-down version of wi,j . The
reason vj,i are updated in a normalized way is to avoid normalizing the pro-
totypes.

For further information on the ART structure, we refer the reader to [5]
and [39].

Hebbian Learning

Hebbian learning is inspired by a natural law formulated by Donald Hebb:

24 Andre de Korvin, Hong Lin, and Plamen Simeonov

When the axon of a cell A is near enough to excite cell B and repeat-
edly takes part on firing it, some changes take place in one or both
cells such that the efficiency of A firing B is increased. [A need not be
the only cell involved in firing B.]

Another way to formulate the above law is as follows: If two neurons on
either side of a synapsis are activated simultaneously, the strength of that
synapsis increases. Consider the situation sketched in Figure 2.10.

j,q

i

q

i,qp

P

a

Fig. 2.10

Input pq is presented at time k +1. Let pj,q denote the j-th component of
pq, 1 ≤ q ≤ Q. Let ai,q be the action of neuron i (located at the next layer).
Then

wi,j(k + 1) = wi,j(k) + αai,qpj,q.

Often, α is taken to be 1. Also, if we focus on supervised learning, ai,q is
replaced by ti,q (the i-th component of the specified target tq for input pq).
The update is then

wi,j(k + 1) = wi,j(k) + ti,qpj,q.

This is conveniently written in matrix form as

W =
Q∑

q=1

tqpT
q ,

provided we assume that the initial values of wi,j are all 0 and we have gone
through the cycle of presenting inputs p1, . . . ,pQ. Note that if the dimension
of the input is r and the dimension of the target is s, then W is an r × s
matrix. This in turn can be conveniently rewritten as

W = TPT ,

where T denotes a matrix whose columns are the target vectors t1, . . . , tQ

and P denotes the matrix whose columns are the inputs vectors p1, . . . ,pQ.
We consider here a linear associator. This means that if the input is p, the
resulting activation is Wp. Assume that the inputs form an orthonormal set;
then

2 Soft Computing Essentials 25

aq = Wpq =

∑
j

tjpT
j

pq =
∑

j

tj(pT
j pq).

Since all the terms pT
j pq are 0 except when j = q, in which case the value is

1, we have
aq = tq.

In the case when the inputs form an orthonormal set, the linear associator
produces an exact recall, and its activation matches the target. If the inputs
are normalized (i.e., ||pq|| = 1) but not orthogonal, then

aq = tq +
∑
j 6=q

tj(pT
j pq).

An error in the recall takes place and that error depends on the amount of
correlation between the inputs of the training set.

One way to produce a better recall is to use the pseudo-inverse method. If
the number of rows of P is greater than the number of columns of P (i.e., the
number of inputs in the training set is less the dimension of the inputs) and
the inputs are linearly independent, then one seeks to minimize the squared
error ||T − WP ||2. It can be shown that under the above assumptions the
minimum is given by

W = TP+,

where P+ denotes the pseudo-inverse of P , that is, P+ = (PT P)−1PT . Note
that in the (very unlikely) case when P−1 exists then P+ = P−1. Note also
that, in contrast to previous structures, no learning takes place. The weights
are set to TPT , or TP+ if the pseudo-inverse method is required.

Particle Swarm Optimization (PSO)

An interesting methodology that, in particular, could be used to train neural
nets was developed by Kennedy and Eberhart in 1995, [4, 16]. For applications
using this approach, we refer to [4] and [16]. The PSO approach is similar to
genetic algorithms (see a later section) in that the starting point is a popula-
tion, more or less randomly selected of potential solutions. The difference, in
contrast to genetic algorithms, comes in assigning random velocities to each
member of the population. Each member of the population is called a parti-
cle. Particles are then moved toward a near optimal solution by evaluating the
“fitness value” of each particle. In fact, a possible set of equations describing
the dynamics of the solution is

vi,d(new) = vi,d(old) + c1 rand()(pi,d − xi,d) + c2 rand()(pg,d − xi,d),
xi,d(new) = xi,d(old) + vi,d.

Here, xi refers to the position of the i-th particle and xi,d refers to the d-th
component of xi. The variables pi,d and pg,d refer to the best position so far

26 Andre de Korvin, Hong Lin, and Plamen Simeonov

occupied by the i-th particle and the global best position over all particles,
respectively. The constants c1 and c2 have often been set to some values close
to 2. The velocities in each direction are bounded by some constant Vmax.
If Vmax is high, particles may move past the optimal point. If Vmax is too
low, exploration becomes limited. The concept of best here refers to relative
to some fitness function. The function rand() refers to a randomly generated
number between 0 and 1. The algorithm then keeps track of the best for each
particle and the global best, both of these, of course, updated as needed. The
differences pi,d−xi,d and pg,d−xi,d are the distances of the current position of
the particle i to its best and to the global best, respectively. The first previous
update can be replaced by

vi,d = w × vi,d + c1 rand()(pi,d − xi,d) + c2rand()(pg,d − xi,d),

where w denotes an inertia coefficient. With that new formulation, Vmax can
be taken to be the dynamic range of each variable (thus Vmax here is a vector).
To optimize the weights in a neural net, the variable xi,d consists of all current
values for all weights and biases. Additional structure can be incorporated.
For example, if the transfer function is LogSig(N) = 1/(1 + e−cN), then the
parameter c can be thrown in as one component of the variables xi,d. The
fitness function could be the sum of squared errors computed over some fixed
training set.

2.1.5 Conclusion

We have presented a small sample of some of the important types of neural
nets whose weights are determined by a training set. Once a network is trained,
given some input that is not part of the training set, the system produces an
output. The system is a black box. In general, it is difficult to know what
exactly the net has learned. An important property is that neural nets have
the capability to adapt. The weights change so that the system gradually
learns to reproduce the specified input-output pairs. It is important to choose
the right training set so that the net is able to generalize to the whole dataset.

2.2 Fuzzy Logic

Let X denote the universal set. The concept of a “fuzzy subset of X” is a
generalization of subset of X. Let A be any subset of X. The subset A can
be identified with its characteristic function, which we will often denote by
the same symbol A. Thus, the subset A viewed as a characteristic function is
defined by

A(x) =
{

1 if x ∈ A
0 if x /∈ A.

2 Soft Computing Essentials 27

The values taken by A are either 1 or 0. If A(x) = 1, then x belongs to A, and
if A(x) = 0, then x does not belong to A. Thus, A viewed as a characteristic
function is “a membership function” since the value of A at x indicates if x
is a member of A or not.

We define A to be a fuzzy subset of X if A is a function defined on X that
takes values in [0, 1]. For example, A(x) = 0.25 indicates that the membership
of x in A is 0.25 - intuitively x does not belong very much to A. The value
A(x) can be interpreted as “on a scale of 0 to 1, how much x fits A.” Often,
fuzzy sets have a linguistic interpretation. In Figure 2.11 we show an example
of how the set “Around 10” might be defined.

8 9 11 1210

0.2

0.7

1

Fig. 2.11

Here, the universal set, often called the “universe of discourse,” is X =
{6, . . . , 12}. The membership of 10 in that set is 1 (i.e., 10 fits perfectly
“Around 10”). The memberships of 9 and 11 fit 0.7 the concept of “Around
10.” The memberships of 6, 7, 13, and 14 are 0; these numbers are too far away
from 10 to fit the concept of “Around 10.” Similarly Figures 2.12, 2.13, and
2.14 could represent “Young,” “Old,” and “Few,” respectively.

1
0.8
0.4

16 22 43

Young

Years

Fig. 2.12

If the universe of discourse X is finite and A is a fuzzy subset of X, the
notation

A =
∑

i

αi/xi, αi ∈ [0, 1],

signifies that A is the supremum of functions fi such that fi(xi) = αi and
fi(xj) = 0 if j 6= i. In particular, if all the xi are distinct, A(xi) = αi. If
xi = x for several distinct values of i, then

28 Andre de Korvin, Hong Lin, and Plamen Simeonov

Years

1
0.6
0.2

Old

16 43

Fig. 2.13

0.5
0.3

1

2 3 4 5

Few

Fig. 2.14

A(x) = sup{αi |xi = x}.

For example 0.7/x1 + 0.3/x1 + 0.5/x2 + 0.9/x2 = 0.7/x1 + 0.9/x2. For the
continuous case, notation such as

A =
∫

x∈[5,10]

e−3(x−1)2/x

signifies that X = [5, 10] and that for each x ∈ X, A(x) = e−3(x−1)2 . In the
notation A =

∑
i αi/xi, if xj ∈ X and xj 6= xi for all i, it is assumed that

A(xj) = 0.

2.2.1 Operations of Fuzzy Sets

If A and B denote two subsets of X, then the characteristic functions of A∩B,
A ∪B, and Ā (the complement of A) are given by

(A ∩B)(x) = A(x) ∧B(x), (A ∪B)(x) = A(x) ∨B(x),
Ā(x) = 1−A(x).

Here, ∧ and ∨ denote the operations Min and Max, respectively. This defini-
tion extends without any change to the case where A and B are fuzzy subsets
of X, for example,

(0.3/x1 + 0.8/x2) ∩ (0.4/x1 + 0.7/x2) = 0.3/x1 + 0.7/x2

and
(0.3/x1 + 0.8/x2) ∪ (0.4/x1 + 0.7/x2) = 0.4/x1 + 0.8/x2.

These operations on fuzzy subsets can be generalized by introducing functions
from [0, 1]2 into [0, 1] called t-norm and s-norm. For additional information
on t-norms and s-norms, see [43].

2 Soft Computing Essentials 29

A t-norm is a function from [0, 1]2 into [0, 1] satisfying the following:
1. t(x, y) = t(y, x),
2. t(t(x, y), z) = t(x, t(y, z)),
3. t is monotone and nondecreasing,
4. t(0, x) = 0, t(1, x) = x.
Clearly, ∧ satisfies the four properties. An s-norm is a function from [0, 1]2

into [0, 1] satisfying items 1 to 3 and 5. s(x, 0) = x, s(1, x) = 1. Clearly, ∨
satisfies these four properties. Thus, a more general definition of intersection
and union of fuzzy sets could be

(A ∩B)(x) = t(A(x), B(x)), (A ∪B)(x) = s(A(x), B(x)),

where t and s are arbitrary t-norm and s-norm. There are many examples of
t-norms and s-norms, we list a few:

t(x, y) = xy, t(x, y) = 1/(1/xp + 1/yp − 1)1/p

and

s(x, y) = x + y − xy, s(x, y) = 1− 1/((1− x)−p + (1− y)−p − 1)1/p.

Once a t-norm (or s-norm) is defined, the dual s-norm (or dual t-norm) can
be constructed by s(x, y) = 1− t(1−x, 1−y) (or t(x, y) = 1− s(1−x, 1−y)).
If dual norms are used, then DeMorgan’s laws hold for fuzzy subsets (i.e.,
(A ∪B) = Ā∩ B̄ and (A ∩B) = Ā∪ B̄). Just as intersections and unions can
be generalized using the t and s-norms, the complement can be generalized
using the negation operator. A negation operator is a nonincreasing map from
[0, 1] to [0, 1] with the additional properties

N(0) = 1, N(1) = 0.

Clearly, N(x) = 1− x is a special case. Other examples could be

N(x) =
1− x

1 + ax
, a > −1,

or
N(x) = (1 + xw)1/w, w > 0.

2.2.2 Construction of Membership Functions

In applications it is important to be able to define fairly well the membership
functions corresponding to linguistic terms. In a given situation what do terms
such as Rich, Poor, Middle Age, . . . , etc. mean?

30 Andre de Korvin, Hong Lin, and Plamen Simeonov

Polling Experts

Perhaps the simplest way to define a membership function is to poll experts.
For example, suppose we have 10 experts on aging questions such as “Is 30
middle age?” “Is 40 middle age?” “Is 60 middle age?” The answer to be given
by the experts should be Yes or No. The number of Yes answers is counted. If
all 10 experts classified 40 as middle age, then the membership of 40 in middle
age would be 1. If 6 experts classified 60 as middle age, then the membership
of 60 in middle age would be 0.6.

Pointwise Comparison

To determine the membership of each element of the universe of discourse
in some linguistic set A, one compares all pairs (xi, xj) of the universe of
discourse and forms the ratios

ri,j = A(xi)/A(xj).

Thus, if ri,j = 2, then the expert has determined that xi fits twice as well
the concept of A than xj does. Clearly, ri,k = ri,jrj,k and rj,i = 1/ri,j . Also,
ri,i = 1. It can easily be checked that if P denotes the matrix whose entries
are ri,j and if 1 ≤ i, j ≤ n, then

Pa = na, a = (A(x1), . . . , A(xn))T .

If a is normalized so that
∑

i A(xi) = 1, then

A(xj) = 1/
∑

i

pi,j

and this determines the membership function of A. For an extensive discussion
of this type of methodology, we refer the reader to [37] and [38].

Parametrized Membership Functions

Often the general form of a membership function is known. In this case, one
uses data to determine the parameters. The membership function is of the
form A(α, e, . . . ,x), where α, e, . . . are parameters and x is a vector. Then
one seeks to minimize

n∑
i=1

(A(α, e, . . . ,xi)− yi)2

as a function of the parameters α, e, If one specifies that A(α, e, . . . , xi) =
yi for all i, then, of course, in most cases an analytical solution cannot be
obtained and methods such as the steepest descent are used to get an approx-
imate solution. In order to avoid landing on a local minimum, different initial
values for α, e, . . . are set.

2 Soft Computing Essentials 31

Using Neural Nets

If the value of the membership function is specified at certain points, then
this defines a training set and, for example, backpropagation as described
earlier could be used. Given a value x in the universe of discourse, the output
provided by the net will be interpreted as A(x).

We now list some of the standard membership functions. The triangular
function is defined as

A(x) =


0 if x ≤ a
(x− a)/(m− a) if a ≤ x ≤ m
(b− x)/(b−m) if m ≤ x ≤ b
0 if x ≥ b.

The triangular function conveys the idea of “around m.”
The S-function is defined as

A(x) =


0 if x ≤ a
2[(x− a)/(b− a)]2 if a ≤ x ≤ (a + b)/2
1− 2[(x− b)/(b− a)]2 if (a + b)/2 ≤ x ≤ b
1 if x > b.

The S-function is shown in Figure 2.15 and it is used for concepts such as Old,
Rich, Heavy, Large, . . . , etc. The point at which A(x) = 0.5 is (a + b)/2.

1

Fig. 2.15

The Gaussian function is defined as

A(x) = e−c(x−m)2 with c > 0.

2.2.3 Fuzzy Relations

Fuzzy relations play a key role in fuzzy inference schemes. The extension from
the standard case is very straightforward.

If X and Y denote two universes of discourse, a relation R from X to Y is
simply a function from X × Y into [0, 1]. Thus, R is simply a fuzzy subset of
X × Y . If X and Y are finite, then R can be represented by a matrix whose
entries are R(xi, yj). Crucial for establishing the fuzzy inference procedure is
the sup-min composition. If R1 is a fuzzy relation from X into Y and R2 is a
fuzzy relation from Y into Z, then we define

32 Andre de Korvin, Hong Lin, and Plamen Simeonov

R1 ◦R2(x, z) = supy∈Y R1(x, y) ∧R2(y, z).

Thus, R1◦R2 is a relation from X into Z, and if R1 and R2 are represented by
matrices, then the matrix of R2 ◦R1 is obtained by “multiplying” the matrix
of R1 by the matrix of R2 where the product is replaced by ∧ and the sum is
replaced by taking the supremum. For example,0.9 0.1

0.6 0.2
0.4 0.5

 ◦ [0.7 0.4
0.2 0.8

]
=

0.7 0.4
0.6 0.4
0.4 0.5

 .

Similarly, if A is a fuzzy set subset of X and R is a fuzzy relation from X to
Y , then A ◦R is defined by

A ◦R(y) = supx∈XA(x) ∧R(x, y).

Of course, ∧ and sup could be replaced by any t-norm and any s-norm, re-
spectively, to obtain a more general operation.

We now proceed to define the implication relation. In general, if A is a
fuzzy subset of X and B is a fuzzy subset of Y , A→ B should be defined as
a relation from X into Y :

(A→ B)(x, y) = f(A(x), B(y)),

where f is a function satisfying certain conditions that define an “implication
function.” Some of the common choices for f are

f(x, y) = x ∧ y, f(x, y) = xy, f(x, y) = (1− x) ∨ y,

and
f(x, y) = sup{c ∈ [0, 1] |x ∧ c ≤ y}, x, y ∈ [0, 1].

It is easy to see that if we take A and B to be standard subsets of X and Y ,
then the first two examples of implication functions imply

(A→ B)(x, y) = 1 if and only if x ∈ A and y ∈ B.

Thus, in the first two cases, (A → B) = A × B. In the third example, it
is easy to see that (A → B) = Ā ∨ B (which is the standard definition of
implication) and in the last example. In the third example where f(x, y) =
(1 − x) ∨ y, if one takes X = Y and if A and B are crisp subsets of X, then
(A→ B) becomes identical to A ⊂ B. For work dealing with fuzzy relations,
see [34] and [1].

2.2.4 Fuzzy Reasoning

If we know that the variable U is some fuzzy subset A′ of X and if we know
that the rule: If U is A then V is B, where A and B are fuzzy subsets of X

2 Soft Computing Essentials 33

and Y holds, then what inference can be made about V ? The answer is to use
the sup-min composition:

V is A′ ◦ (A→ B).

To have an intuitive idea why this works, let A and B be standard sets and
let A′ = A. Then the above formula becomes

V (y) = supxA(x) ∧A(x) ∧B(y) = B(y).

So we obtain the standard implication: U is A and (if U is A then V is B)
implies V is B. In particular, if U is a number a, then V is

V (y) = supxX a(x) ∧A(x) ∧B(y) = A(a) ∧B(y).

Here, Xa denotes a function defined on X that is 1 if x = a and 0 otherwise.

1

a

Fig. 2.16a

A(a)
B(y)

Fig. 2.16b

A(a) V(y)

Fig. 2.16c

Figure 2.16a shows U identified with Xa. Figure 2.16b shows the member-
ship function of B. Fig. 2.16.c shows the membership of V when U is a and
the presence of the rule: if U is A then V is B.

34 Andre de Korvin, Hong Lin, and Plamen Simeonov

Similar conclusions are drawn with different choices of the implication
function. In the above example, A(a) denotes the strength of the rule given
the input U = a. If the input is U = A′, where A′ is a fuzzy subset of X, then

V (y) = supxA′(x) ∧A(x) ∧B(y).

The quantity supxA′(x) ∧ A(x) is called the possibility of A′ and A and is
denoted by Poss(A,A′). So, V (y) = Poss(A,A′) ∧ B(y). In this case, the
strength of the rule (relative to the input U is A′) is Poss(A,A′). It should be
noted that Poss(A,A′) represents “the largest intersection of A and A′.” Of
course, the rule may have multiple antecedents and consequents such as:

If U1 is A1 and U2 is A2 and U3 is A3, then V1 is B1 and V2 is B2.
The input for this rule is U1 is A′

1, U2 is A′
2, U3 is A′

3. The inferred fuzzy
set is

W (y1, y2) = Poss(A1, A
′
1) ∧ Poss(A2, A

′
2) ∧ Poss(A3, A

′
3) ∧B1(y1) ∧B2(y2).

It specifies the membership of an arbitrary pair (y1, y2) in the fuzzy output
W . In the more general case, any legal implication function is used and inter-
section is replaced by an arbitrary t-norm. Suppose that we have the input

U1 is A′
1, U2 is A′

2,. . . , Un is A′
n

and the rule
If U1 is A1 and U2 is A2 . . . and Un is An, then V1 is B1 and V2 is B2

. . . and Vm is Bm.

The multiplicative input is defined by

Pi(x1, . . . , xn) = t[A′
1(x1), . . . , A′

n(xn)],

the multiplicative antecedent is defined by

Pa(x1, . . . , xn) = t[A1(x1), . . . , An(xn)],

the multiplicative consequent is defined by

Pc(y1, . . . , ym) = t[B1(y1), . . . , Bm(ym)],

and

R(x1, . . . , xn; y1, . . . , ym) = f(Pa(x1, . . . , xn), Pc(y1, . . . , ym))

defines the fuzzy relation generated by the rule. The output under these con-
ditions is then W = Pi ◦R; that is,

W (y1, . . . , ym) = supx1,...,xn
Pi(x1, . . . , xn)tR(x1, . . . , xn; y1, . . . , ym).

In summary, given an if-then rule with fuzzy antecedent and fuzzy consequent,
this rule defines a fuzzy relation R. Given then a fuzzy input, the rule pro-
duces a fuzzy output obtained by applying the sup-min composition to the

2 Soft Computing Essentials 35

(input, rule) pair. Consider the following example:

Rule: If the Pressure is High, then the Volume is Small.

Input: Pressure is Average.

Average High

0.6

1

X

Fig. 2.17

Figure 2.17 shows the memberships of the fuzzy sets High and Average. In
this example, Poss(Average,High) = 0.6 since this is the largest intersection
of Average and High. Figure 2.18 shows the membership function of the fuzzy
set (W (y) = 0.6) ∧ Small(y) if the implication function is f(x, y) = x ∧ y or
(W (y) = 0.6)Small(y) if the implication function is f(x, y) = xy.

1
Small

Y
Fig. 2.18

Note that any y ∈ Y will belong less to the output W than it belongs to
Small. Intuitively, Small is implied by High is the only rule we have and the
pressure does not match High. This example points to two items that need to
be addressed:

1. The output produced is fuzzy. In many situations one needs a single
number as an output (e.g., How many cm3 does the Volume occupy?). This
will be addressed in a later section; see defuzzification.

2. It is clear that more than one rule is needed since any single rule is only
partially applicable to a given input.

We now assume that we have a set of rules of the form
Rk: If U is Ak, then V is Bk, k = 1, . . . , N .

The fuzzy input is U is A′. The sets A1,. . . , AN , B1,. . . , BN are in general
fuzzy. Each rule produces a fuzzy output as described above. Thus, we have
W1,. . . , WN , the outputs produced by the N rules. The answer is obtained
by aggregating these N outputs:

36 Andre de Korvin, Hong Lin, and Plamen Simeonov

W (y) = AN
k=1Wk(y),

where A denotes an aggregation operation. By an aggregation operation we
mean a map A from [0, 1]p into [0, 1], with p is a positive integer - that is,
nondecreasing in each of its p variables and

A(0, . . . , 0) = 0, A(1, . . . , 1) = 1.

An often used aggregation operation is the V operation. Thus, we may define

W (y) = V N
k=1Wk(y).

This may be generalized to multiple antecedents and consequents. Using no-
tations previously defined in this section and generalizing intersection and the
V operations to t-norms and s-norms, respectively, we have

Pi(x1, . . . , xn) = t[A′
1(x1), . . . , A′

n(xn)],
Pa,k(x1, . . . , xn) = t[A1,k(x1), . . . , An,k(xn)],
Pc,k(y1, . . . , ym) = t[B1,k(y1), . . . , Bm,k(ym)],
Rk(x1, . . . , xn; y1, . . . , ym) = f [Pa,k(x1, . . . , xn), Pc,k(y1, . . . , ym)],

and then
W = Pi ◦R, where R = AN

k=1.

An alternative way to combine the N rules is

Wk = Pi ◦Rk and W = AN
k=1Wk.

Thus, the two ways to aggregate are

Pi ◦ AN
k=1Rk and AN

k=1(Pi ◦Rk).

In general, these two ways generate different outputs. The outputs will co-
incide if ∨ is taken for aggregation and ∧ is taken for t-norm. Consider the
following two rules:

If Pressure is High then Volume is Small,
If Pressure is Low then Volume is Large,

and say the input is Pressure is Average. Assume Poss(High,Average) =
0.6 and Poss(Low,Average) = 0.3. Then W1(y) = 0.6Small(y), W2(y) =
0.3Large(y), where the implication function was chosen to be the product,
and R1(x, y) = High(x)Small(y), R2(x, y) = Low(x)Large(y), and R(x, y) =
R1(x, y) ∨R2(x, y).

Much work has been published on “approximate reasoning”, examples of
which were sketched above. For further reading on approximate reasoning and
related matters see [27], [26], [44], [21], [22], [34], and [36].

2 Soft Computing Essentials 37

2.2.5 Other Rules

Although the standard if-then rules are the most commonly used, at times
different types of rules are needed. In this section we list a small sample of
alternate rules. The first rule we list addresses the problem of the rule working
most of the time except when some condition occurs. The general form is

If U is A, then V is B unless W is C.
The input to this rule should be of the form (U, V) is D, where D is a fuzzy

subset of Y × Z, Y is the universe of discourse for U , and Z is the universe
of discourse for W . The above rule can then be replaced by the following two
rules:

(i) If U is A and W is not C, then V is B.

(ii) If U is A and W is C, then V is not B.

Rule (i) is the default case. If W is not C, the rule must hold; that is, if
U is A then V is B holds. Rule (ii) expresses the exception i.e. if U is A then
we do not want V to be B because W is C. Each of these rules generates a
fuzzy relation. That relation will depend on the implication function chosen.
Suppose we pick

f(x, y) =
{

1 if x ≤ y
y otherwise.

Then the relations generated by rules (i) and (ii) are

R1(x, y, z) =
{

1 if A(x) ∧ C̄(z) ≤ B(y)
B(y) otherwise

and

R2(x, y, z) =
{

1 if A(x) ∧ C(z) ≤ B̄(y)
B̄(y) otherwise.

The relation generated by the two rules is

R(x, y, z) = R1(x, y, z) ∧R2(x, y, z).

The output generated by the unless rule is

V (y) = supx,zD(x, z) ∧R(x, y, z).

In particular, if the input is numerical, that is,

D(x, z) =
{

1 if x = x∗ and z = z∗

0 otherwise,

it is easy to see that

38 Andre de Korvin, Hong Lin, and Plamen Simeonov

R(x, y, z) =
{

B(y) if B(y) < A(x∗) ∧ C̄(z∗) and A(x∗) ∧ C(z∗) ≤ B̄(y)
B̄(y) if A(x∗) ∧ C̄(z∗) ≤ B(y) and A(x∗) ∧ C(z∗) > B̄(y).

Otherwise, R(x, y, z) = 1. Intuitively, this expresses the idea that V under
different conditions behaves as B or B̄.

Another type of rule is a rule that expresses uncertainty about the rule
itself. One form of this is

If U is A, then V is B with certainty a.
Here, a ∈ [0, 1]. If a = 1, we are certain about the rule. If a = 0, we are totally
uncertain about the rule. The fuzzy relation generated by this rule is

R∗(x, y) = [R(x, y) ∧ a] + (1− a).

Here, R denotes the relation generated by the rule: If U is A, then V is B.
So, R(x, y) = f [A(x), B(y)], where f is the selected implication function.
Note that if a = 1, R∗(x, y) = R(x, y). If, on the other hand, a = 0, then
R∗(x, y) = 1. In that case, V (y) = supxA′(x)∧R∗(x, y) = 1 if we assume that
the fuzzy input A′ is normal (i.e., supxA′(x) = 1). This implies V = Y , which
reflects total uncertainty, as we are not able to pin down what elements or Y
are more or less believed to be in the output V . Intuitively, every element of
Y is equally possible as an output in a case of total uncertainty.

Another type of uncertainty rule is one that is truth-qualified. The general
form is

If U is A, then V is B is S.
Here, S stands for a fuzzy set representing a truth qualification. An example
is If U is A, then V is B is very true. In this context, true is a fuzzy subset of
[0, 1], whose membership is true(x) = x. Very true might have a membership
function like Verytrue(x) = x2, and Somewhat true might have a membership
function like Somewhattrue(x) =

√
x. The statement If U is A, then V is B

is S generates a fuzzy relation R∗ defined by

R∗(x, y) = S(R(x, y)),

where R is the relation defined by the statement If U is A, then V is B.
Note that if S = true, then S(R(x, y)) = R(x, y), so R∗ = R and the two
statements: If U is A then V is B is true and If U is A, then V is B are
equivalent statements.

The next type of statement involving uncertainty that we discuss in this
section has the form

If Probability(U is A) is P then V is B.
Here, P denotes a fuzzy probability. For example, if P = Likely, P is a fuzzy
subset of [0, 1] whose membership function might be as shown in Figure 2.19.

Any probability exceeding 0.8 is a perfect example of Likely. The input to
such a rule is a probability distribution on X, the universe of discourse of U .
Let f be such a probability distribution. Let

2 Soft Computing Essentials 39

1

0.80 1

Fig. 2.19

Wf =
∑

x

A(x)f(x).

The quantity Wf represents the average membership in A relative to f . The
output is then

V (y) = P (Wf) ∧B(y).

What this says is that if the average membership of A relative to the input
probability distribution f perfectly fits P , then the output is B.

The last type of statement involving uncertainty we illustrate in this sec-
tion is one that uses qualifiers. An example of such a rule could be

If Most Big Trucks are Heavy, then the Supply of Gas would be Small.
Here the qualifier is Most. The membership function of Most could be as
shown in Figure 2.19. The output in this case could be

GasSupply(y) = Most
(
|BigTruckandHeavy|

|BigTruck|

)
∧ Small(y).

Here, |A| refers to the cardinality of the fuzzy set A (i.e., |A| =
∑

x A(x)). The
universe of discourse is the set of trucks under consideration. Each truck has
a membership value in Big Truck and in Heavy. The ratio in the parentheses
is the fuzzy version of the fraction of Big Trucks that are Heavy.

2.2.6 Defuzzification

In previous subsections we have shown how a set of rules, when provided
with some input, generate and output. The output was a fuzzy subset of the
appropriate universe of discourse. Most of the time we need to defuzzify the
output (i.e., to select an element that in some sense best represents the fuzzy
output) Several methods are available and we briefly indicate some of these.
In this subsection, Bk will denote the fuzzy output generated by the k-th rule,
1 ≤ k ≤ N . We assume that the input is a numerical vector. In a previous
subsection we have pointed out that one often aggregates the sets Bk. Let B
denote that aggregation. (For example, B = V N

k=1 if V is used for aggregation.)

The Centroid Method

The domain of B is partitioned into points y1, . . . , yM and we set

40 Andre de Korvin, Hong Lin, and Plamen Simeonov

yc(x) =
M∑
i=1

yiB(yi)/
M∑
i=1

B(yi).

Here, x denotes the input, to stress that the expression on the right-hand side
depends on the input x since each Bk and hence B depends on the input x.
In practice, the computation of yi may take some time.

The Center of Sums Defuzzifier

Here, the sets Bk are first combined by addition; that is,

B(y) =
N∑

k=1

Bk(y).

Then the centroid of B is found by the formula

ya(x) =
N∑

k=1

cBk
aBk

/
N∑

k=1

aBk
.

Here, cBk
denotes the centroid for Bk and aBk

denotes the area under Bk. It
should be noted in this approach that the areas of overlap between distinct
Bk are counted at least twice. However, ya is easier to compute than yc.

The Height Defuzzifier

The formula giving this defuzzification is

yh(x) =
N∑

k=1

ȳkBk(ȳk)/
N∑

k=1

Bk(ȳk).

Here, ȳk is the point at which Bk assumes its largest value. If there is more
than one point at which Bk is maximum, then ȳk is the average of all these
points.

The Center of Sets Defuzzifier

The defuzzification formula is

yCoS(x) =
N∑

k=1

ck

p∏
j=1

F k
j (xj)/

N∑
k=1

p∏
j=1

F k
j (xj).

Here, it is assumed that the antecedent of the k-th rule is
If X1 is F k

1 and X2 is F k
2 and . . . and Xp is F k

p ,

2 Soft Computing Essentials 41

and the strength of the rule under input x = (x1, . . . , xp)T is
∏p

j=1 F k
j (xj).

The number ck denotes the centroid of Bk. Note that if the consequents of all
rules are fuzzy sets Gk and each Gk is symmetric, normal, and convex, then
the computations are greatly simplified since ck = ȳk and Gk(ȳk) = 1. The
quantities ȳk are known ahead of time and we then have yCoS = yh for every
input x.

For additional information on defuzzification we refer the reader to [10],
[25], and [45].

2.2.7 Two Applications

Numerous applications have been studied using fuzzy rules. In this subsection
we sketch two rather different applications.

Forecasting Time Series

Given p measurements, we would like to predict what the next one will be.
Assume we have N measurements recorded, x1, . . . , xN . This generates N − p
elements of a training set of the form

(xk, . . . , xp+k−1); xp+k, k = 1, . . . , N − p.

Then we define N − p rules, each rule being defined by one of the training
elements

Rk: If X1 is A1
k and . . . and Xp is Ap

k, then Y is Bk,

1 ≤ k ≤ N − p. Each Ai
k is a fuzzy set, say a triangular or a Gaussian

membership function centered at xk+i−1. The set Bk is centered at xp+k.
Using an additional training set together with a least squares fit, one could
later refine the parameters of the membership functions.

An alternate approach to the same problem is to locate an interval [xL, xU]
where all xi fall. Partition this interval into overlapping subintervals A1, A2,
. . . as shown in Figure 2.20.

XX A

A A

L U

3

2

1

Fig. 2.20

Consider, for example, triangular membership functions, the bases of the
triangles being A1, A2, Determine the degree to which each xi belongs to
the triangular functions. Let the degree be the largest at the triangle based

42 Andre de Korvin, Hong Lin, and Plamen Simeonov

on Aj(i). Then the rules generated are

Rk: If X1 is Aj(k) and X2 is Aj(k+1) and . . . and Xp is Aj(k+p−1), then
Y is Aj(k + p),

1 ≤ k ≤ N − p. Conflicts may be present. The same antecedent might be gen-
erated by (xk, . . . , xk+p−1) and by (xl, . . . , xl+p−1), yet a different consequent
generated by xk+p and xl+p. In that case, the conflict might be resolved by
selecting the strongest rule (i.e., by comparing Aj(k)(xk)∧ . . .∧Aj(k+p)(xk+p)
and Aj(l)(xl)∧· · ·∧Aj(l+p)(xl+p)). Thus, when a sequence such as y1,. . . ,yp is
fed to the rules, a fuzzy output in produced and then defuzzified as described
in the previous subsections. This output will be the predicted next element of
the sequence.

A Fuzzy Controller

We have a mobile robot. The goal is to have the robot move so that it avoids
obstacles. In this example, the robot has four sensors. The sensors measure
distances front, rear, left, and right. The diagram in Figure 2.21 presents the
robot under discussion.

Right

A B

Front
Left

Right
Wheel

Left
Wheel

Rear
Fig. 2.21

The blocks A and B represent motors contributing to the left and the right
wheel. Front, Rear, Left, and Right represent the four sensors that evaluate
their respective distances to the obstacle. The distances can have three fuzzy
values: Short, Average, and Large. Each motor speed could have seven fuzzy
values: Back Fast, Back Average, Back Slow, Stand Still, Forward Slow, For-
ward Average, and Forward Fast. Rules could be defined as follows:

R1: If Left Distance is Large and Front Distance is Large and Right
Distance is Large, then Left Motor is Fast Forward and Right Motor is Fast
Forward.

R2: If Front Distance is Short, then Left Motor is Forward Average and
Right Motor is Backward Average.

2 Soft Computing Essentials 43

The second rule states that if there is an obstacle a short distance ahead,
then make a left turn. Other rules such as go to the right if there is an obstacle
on the left can easily be written down.

Fuzzy controllers form the bulk of the applications in the area of fuzzy
logic. A small fraction of the literature dealing with Fuzzy Controllers can be
found in [42], [2], [18], [27], and [26].

2.2.8 The Takayi-Sugeno-Kang Model (TSK Model)

A typical rule in this system is of the form

If X is A and Y is B, then Z = f(x, y).

The input is typically numerical and often the values of the input compo-
nents are precisely x and y. Often studied are the cases where f is a constant
function or a linear function px + qy + r. Suppose we have two such rules:

R1: If X is A1 and Y is B1 then Z is p1x + q1y + r1.

R2: If X is A2 and Y is B2, then Z is p2x + q2y + r2.

If the input is (x, y)T , then the output is

w1(p1x + q1y + r1) + w2(p2x + q2y + r2)
w1 + w2

,

where w1 = A1(x)tB1(y) and w2 = A2(x)tB2(y) and t denotes a t-norm, say
∧ or the product. The interesting part is that no defuzzification is performed;
thus the output is not computationally intensive. The TSK model is well
adapted to be the fuzzy component of a neuro-fuzzy system. These systems
will be discussed in a later section.

2.2.9 Fuzzy Sets of Type 2

A fuzzy set of type 2 is defined by its membership function that maps X×[0, 1]
into [0, 1]. Thus, if Â denotes a fuzzy set of type 2, Â(x, u) is a number in
[0, 1] and the interpretation is: The belief that the membership of x in Â is u
is Â(x, u). The diagram in Figure 2.22a describes the situation.

The diagram in Figure 2.22b shows a section of Â when x is kept constant.
For every x fixed, Â(x, u) = Âx(u) and Âx is a fuzzy subset of [0, 1]. In Figure.
2.22b, Âx has a Gaussian-like membership function.

44 Andre de Korvin, Hong Lin, and Plamen Simeonov

u

1

1

X
0 x

A(x,u)^

Fig. 2.22a

u

1

1

0 x

Fig. 2.22b

Thus, Â factors in the uncertainty that the membership of x in Â is u, that
is, the possibility that x has membership u in Â is Â(x, u). Most applications
using fuzzy sets of type 2 deal with the case where Âx is a subinterval Ix of
[0, 1] depending on x; that is

Âx(u) =
{

1 if u ∈ Ix

0 otherwise.

The diagram in Figure 2.23 depicts a situation where X = {1, 2, 3} and a
type 2 fuzzy subset Â of X, where the membership of 1 in X is some number
between 0.3 and 0.6 (but it is unknown which number that is), the membership
of 2 in Â is between 0 and 0.3, and the membership of 3 in Â is 0.6 and 1.

0
X

1

u
1

2 3

0.3

0.6

Fig. 2.23

2 Soft Computing Essentials 45

Using previous notation we have I1 = [0.3, 0.6], I2 = [0, 0.3], and I3 =
[0.6, 1]. Standard operations may be defined using standard interval compu-
tations:

(Â ∪ B̂)x = [a1
x ∨ b1

x, a2
x ∨ b2

x],
(Â ∩ B̂)x = [a1

x ∧ b1
x, a2

x ∧ b2
x],

c(Â)x = [1− a2
x, 1− a1

x].

Here, Âx = [a1
x, a2

x], B̂x = [b1
x, b2

x], and c(Â) denotes the complement of Â.
Clearly, the family {Ax |x ∈ X} determines the set Â.

Given a type 2 set Â, one can define a fuzzy set Âe by setting Âe(x) = ux,
where ux is a number selected from the interval Ix. The set Âe is said to be
embedded in Â. If X and U are discretized and X has n elements, and Ixi

has Mi elements, the total number of embedded sets is
∏n

i=1 Mi.
We now consider a set of if-then rules where the antecedents and the con-

sequents are fuzzy sets of type 2 and the input is a number denoted by x∗.
First, we look at one rule:

If X is Â, then Y is B̂,
where Â and B̂ are fuzzy sets of type 2. We assume, moreover, that all relevant
spaces have been discretized. Let Âe,h and B̂e,j be typical embedded sets in
Â and B̂, as defined previously, 1 ≤ h ≤ nA, 1 ≤ j ≤ nB . We then consider
the rule

If X is Âe,h, then Y is B̂e,j .

There are nAnB such rules. Given the numerical input x∗, each of these
rules produces a fuzzy output, as explained in a previous subsection. Denote
the output by Gh,j . In fact,

Gh,j(y) = Âe,h(x∗)tB̂e,j(y),

where t denotes a t-norm. The output produced by the rule If X is Â, then Y
is B̂ is then {Gh,j | 1 ≤ h ≤ nA, 1 ≤ j ≤ nB}. Thus, if G denotes the output,
we have

G(y) = {Gh,j(y) | 1 ≤ h ≤ nA, 1 ≤ j ≤ nB}.

Given any type 2 set Â, one can define Â and Â by (Â)x = ax and (Â)x = bx,
where Ix = [ax, bx]. (Â) and (Â) are the lower and the upper membership
functions of Â, respectively. It can be shown that G and G are given by
the outputs of the rules If X is Â, then Y is B̂ and If X is Â, then Y is B̂.
Then, G(y) = [G(y), G(y)]. The formula can be naturally extended to multiple
antecedents; no discretization required:

G(y) =
(
T p

m=1Âm(x∗m)
)

tB(y),

46 Andre de Korvin, Hong Lin, and Plamen Simeonov

G(y) =
(
T p

m=1Âm(x∗m)
)

tB(y),

Ĝ(y) = [G(y), G(y)].

Here, T and t denote t-norms that may or may not be the same. Finally, if
there are N such rules, each rule produces an output Gl, as indicated earlier,
and the set of N rules produces an output G that is an aggregation of Gl,
1 ≤ l ≤ N . Typically,

Ĝ(y) = ∩N
l=1Ĝl(y),

where the union is as defined earlier.

The Defuzzification Process

How is an interval valued function, such as G defuzzified? The process is
accomplished in two steps: type reduction and defuzzification. Type reduction
extracts a standard fuzzy set from G that is then defuzzified by any method
indicated in a previous subsection. A number of methods leading to type
reduction are available, just as a number of defuzzification methods that can
be used. A very straightforward type reduction could be obtained by setting

T (y) = (G(y) + G(y))/2.

This is followed by one of the standard defuzzification methods applied to T .
We now briefly sketch one type of defuzzification: the height defuzzi-

fication. The k-th rule of type 2 produces an output as described ear-
lier, B̂k(y) = [Bk(y), Bk(y)], 1 ≤ k ≤ N . Obtain the midpoint function
Tk(y) = (Bk(y) + Bk(y))/2. Obtain yk, a point at which Tk is maximum.
If Tk is maximum on a set of points, take the average; see Figure 2.24.

B (y)

B (y)

yk

k

Tk
k

Fig. 2.24

Reorder the N rules if necessary so that we have y1 ≤ y2 ≤ · · · ≤ yN . For
each yi, consider the interval Iyi

and partition that interval into Mi points.
Consider the set

Bh(x) =

{
N∑

i=1

yiui/
N∑

i=1

ui |ui ∈ Iyi

}
.

2 Soft Computing Essentials 47

A typical element in that set is the center of gravity of the function whose
value at yi is ui. There are

∏N
i=1 Mi such centers. It can be shown that Bh(x)

is actually an interval. Here, the notation Bh(x) is used to stress that the
formula that yields Bh(x) depends on the input x. Thus, Bh(x) = [cl, cr],
where cl = inf{

∑
yiui/

∑
ui} and cr = sup{

∑
yiui/

∑
ui} over ui ∈ Iyi

. The
defuzzification is obtained by taking the midpoint of [cl, cr]. In the present
context, type reduction refers to the defuzzification of fuzzy sets whose mem-
bership at yi is ui. That defuzzification produces the corresponding centers
of gravity

∑
yiui/

∑
ui, where ui ∈ Iyi

. The process in illustrated in Figure
2.25.

Typez
Rules

Type
Reduction

Defuzzifier Numerical
Fuzzifier

Numerical
Input Output

Inference
Fuzzy Input Typez

Output

Fig. 2.25

Consider the rule If x is Low, then y is Average, where the membership
functions of Low and Average are shown in Figure 2.26a. The idea is to factor
in uncertainty due to the difference in expert opinions by replacing the above
rule by If x is Loŵ, then y is Averagê. Memberships of type 2 of Loŵ and
Averagê are shown in Figure 2.26b.

3

3 4 5

Low1

Average

Fig. 2.26a

For more information on fuzzy sets of type 2 see [28], [29], and [30].

48 Andre de Korvin, Hong Lin, and Plamen Simeonov

Low1

Average

^

^

4.53.5

4.5 5.53.52.5

Fig. 2.26b

2.3 Neuro-Fuzzy Systems

2.3.1 Introduction

Neural networks and fuzzy systems have been discussed in the two previous
sections. Both systems are highly parallel and use parametric representations
for weights and for membership functions. In neural nets, knowledge repre-
sentation and extraction is a difficult process. In a fuzzy system, knowledge
representation takes the natural form of if-then statements. On the other hand,
the success of fuzzy systems depends on how accurate the membership func-
tions are. In addition, it is not always clear how to translate knowledge into
if-then rules. It is therefore natural to seek a hybrid technology that would
combine the advantage of neural nets (i.e., their capability to adapt to a given
environment with the advantage of fuzzy systems i.e., their natural knowledge
representation). The TSK model has been defined in a previous subsection.
Recall that a typical rule has the form

If X is A and Y is B, then Z = f(x, y).

Here, A and B denote fuzzy sets and f is often either a constant or a first-
order polynomial. It was pointed out that no defuzzification was necessary.
The output is given by the single formula

C(x1, . . . , cn) =
N∑

i=1

w̄ifi(x1, . . . , xn)

if there are N rules and if fi is the consequent of the i-th rule. Here, w̄i denote
the normalized weights

w̄i = wi/
N∑

j=1

wj ,

where wi is the strength of the i-th rule when the input is (x1, . . . , xn)T .

2 Soft Computing Essentials 49

2.3.2 Fuzzy Neurons

We now extend the idea of a neuron to define “fuzzy neuron.” Although a
general definition could be given, we mainly will use three types of neuron.
The first type has a membership function stored that it uses to weight a fuzzy
input, whereas the other two types use boolean operations. The three types
are shown in Figures 2.27a – 2.27c respectively.

A A
Poss(A,B)

Fig. 2.27a

a1 t a2 t t an

1a

an

t

Fig. 2.27b

1a

an

s
a1 sa2 s san

Fig. 2.27c

The input to the first type is a fuzzy set B and the output is Poss(A,B).
In particular, if the input is a number x, then the output is A(x). The other
two types perform a t-norm and an s-norm operation, respectively. Inputs
here are numbers in [0, 1]. Often t is the minimum or the product operation
and s is often the maximum operation.

2.3.3 The Adaptive Neuro-Fuzzy Inference System (ANFIS)

It is straightforward to convert TSK-type rules into an ANFIS architecture.
For example, suppose that we have the following two rules

R1: If x is A1 and y is B1, then z is f1(x, y).

R1: If x is A2 and y is B2, then z is f2(x, y).

Here, f1(x, y) = p1x + q1y + r1 and f2(x, y) = p2x + q2y + r2. This system of
rules translates into a five-layer ANFIS shown in Figure 2.28.

50 Andre de Korvin, Hong Lin, and Plamen Simeonov

A 1

A 2

B 1

B 2

Π

Π

N

N
w f (x,y)22

f=w f + w f1 1 2 2

w f (x,y)1 1w w

w w

1

2

1

2

x

x y

y

x

y

Σ

Fig. 2.28

In this case, the input is a numerical pair (x, y). The first layer consists
of fuzzy neurons that output A1(x), A2(x), B1(y), and B2(y). The second
layer, whose nodes are labeled Π, outputs the t products. For example, it
could output A1(x)B1(y) and A2(x)B2(y). The third layer, whose nodes are
labeled N , simply normalizes the previous strengths of the two rules. The next
layer simply outputs f1(x, y) and f2(x, y) scaled by the normalized strengths.
Finally, the last layer’s single node labeled Σ outputs what the TSK system
would output.

2.3.4 A Comparison Among Three Approaches

In Figure 2.21 we have shown a simple vehicle whose goal is to avoid obstacles.
We have stated the type of fuzzy rules that may control this vehicle. A purely
neural net approach to this could be to define two neural nets for which the
input is the 4-dimensional vector describing the four distances to the obstacle
(Left,Front,Right,Rear)T and the output would be the corresponding forces
applied to the left motor and to the right motor. Thus, the two neural nets
would connect the four sensors input to the two motors. The weight could
initially be defined by, for example, the matrix W .

Left Front Right Rear Bias
A 0.2 −0.5 −0.3 0.2 0.3
B −0.4 0.1 0.2 0.3 0.3

At every collision, the matrix W should be updated, using, for example,
backpropagation. The target would be provided by the desired trajectory be-
fore collision has occurred. It is certainly not clear, by looking at the weights,
how to characterize the behavior of the vehicle. That characterization is very
apparent using the fuzzy approach.

Consider now the neuro-fuzzy approach. Rules could take the following
forms:

R1: If Left Distance is Large and Front Distance is Large, then Force
applied to Left Motor is f1(x, y).

2 Soft Computing Essentials 51

R2: If Front Distance is Short, then Force applied to Left Motor is f2(y).

Here, x is the Left distance and y is the Front distance: f1(x, y) = p1x+q1y+r1

and f2(y) = q2y+r2. What is needed is a learning algorithm to estimate p1, q1,
r1, q2, and r2 as well as the parameters involved in the membership functions
of Large and Short.

Learning Algorithm for ANFIS

We need a learning algorithm for systems such as the one sketched in Figure
2.28. This system could be viewed as an example of an adaptive net and its
parameters estimated as described in section 2.1. Perhaps a better way to
proceed is to partition the parameter set into the consequent parameters –
those coming from

fi(x, y, z, . . .) = pi,1x + pi,2y + pi,3z + · · ·+ ri

– and the antecedent parameters, i.e. those coming from the defining mem-
bership functions of Ai,1, . . . , Ai,p, assuming that there are p variables in the
antecedent. We note that the output f =

∑
w̄ifi is a linear function in pi,1,

pi,2, pi,3,. . . ,ri, 1 ≤ i ≤ N , where N is the number of rules. These parameters
can therefore be estimated by a least squares fit. The antecedent parameters
can be estimated by using the backpropagation algorithm for adaptive nodes.

2.3.5 Organizing Rules and Architectures

Consider the four rules:

If x is A1 and y is B1, then z1 = c1,1.

If x is A2 and y is B2, then z1 = c2,1.

If x is D1 and y is E1 then z2 = c1,2.

If x is D2 and y is E2, then z2 = c2,2.

Here, ci,k refers to the formula giving zk in the i-th rule and

ci,k = pi,kx + qi,ky + ri,k.

The extension of this notation to the case of more than two variables is ob-
vious. The diagram in Figure 2.29 shows a possible structure for these four
rules. The idea is to put together in parallel ANFIS structures for each output.
Here, O1 and O2 obviously refer to the outputs z1 and z2 generated by these
four rules when the input is the numerical vector (x, y)T . Such a structure is
called “Coactive Adaptive Neuro-Fuzzy Inference System” or CANFIS in the

52 Andre de Korvin, Hong Lin, and Plamen Simeonov

ANFIS

ANFIS

O

O

1

2

x
y

Fig. 2.29

literature. Thus, one way to construct a CANFIS is to put several ANFIS in
parallel (one ANFIS for each output). This way of proceeding is often ineffi-
cient since no parameter sharing takes place and one is typically faced with
a large number of parameters to estimate. A better way to proceed is to use
multiple consequents. For example, consider the following two rules:

If x is A1 and y is B1, then z1 = c1,1 and z2 = c1,2,

If x is A2 and y is B2, then z1 = c2,1 and z2 = c2,2.

The diagram in Figure 2.30 shows a possible structure for these two rules.

A 1

A 2

B 1

B 2

Π

Π

N

N

w w

w w

1

2

1

2

x

y

Σ

Σ

w c1 11

w c2 21

w c1 1

w c2 22

2

O1

O 2

x y

Fig. 2.30

Clearly, in this approach, parameter sharing takes place and fewer pa-
rameters are to be estimated for this CANFIS. On can draw an interesting
comparison between a CANFIS and a standard neural net. The part following
the N layer in Figure 2.30 could be replaced by the system shown in Figure
2.31.

1w

2w

11c
1w

2wy

x

bias
c21

O1 = + 2111 ccΣ

Fig. 2.31

Here, the weights connecting x, y, and the bias to the first neuron of the
first layer are p1,1, q1,1, and r1,1, whereas the weights connecting x, y, and the
bias to the second neuron are p2,1, q2,1, and r2,1. Thus, the two neurons will

2 Soft Computing Essentials 53

produce c1,1 and c2,1 as outputs. The weights connecting these to the Σ node
are w̄1 and w̄2, obtained as outputs from the first part of the system shown
in Figure 2.30. Here, the system produces the output O1. A similar net, not
shown in the diagram, is needed to produce the second output O2. Training of
this set will determine the weights pi,j , qi,j , and ri,j . From this it is therefore
clear that CANFIS can be viewed as appending the linguistic component in
front of a standard net. In fact, the neural component may be modified to
handle nonlinear functions of x and y. Consider the general m-th rule:

Rm: If x1 is A1 and x2 is A2 and . . . , then z1 = cm,1, z2 = cm,2, · · · , zp =
cm,p.

x

x

x 2

1

t

O k

c
nw

cmk

nk

wm

w

w

wm1

mt

m2 c mk k Σ
t t tkkϕ (Net)=f (w c)k

Fig. 2.32

Figure 2.32 shows how a set of rules of type Rm generate the outputs Ok.
We have a training set and the weights wm,k, 1 ≤ k ≤ t are adjusted for

1 ≤ m ≤ N if we have N rules of type Rm. In the case discussed previously, f
was the identity function. Here, fk could, for example, be fk(u) = 1/(1+e−u).
The net prior to the ϕk(Netk) box corresponds to the action of one rule (Rm

in this case) and could, in principle, be trained by itself. The ϕk(Netk) box
plays the role of consensus builder by weighting every rule according to its
normalized strength. One could still generalize this by allowing the transfer
function at cm,k to be other than the identity function.

2.3.6 Updating the Consequents and the Antecedents

In order to update the consequents, one needs to update the weights wm,k,
1 ≤ k ≤ t, 1 ≤ m ≤ N . In order to do this, the function

E = (tk −Ok)2/2

needs to be minimized, where tk is the corresponding target and Ok =
ϕk(Netk). We apply the steepest descend method: 4wm,i = −ηm∂E/∂wm,i,
where ηm is a small positive number. So,

4wm,i = −ηm
∂E

∂Netk

∂Netk

∂wm,i

54 Andre de Korvin, Hong Lin, and Plamen Simeonov

= −ηm
∂E

∂Ok

∂Ok

∂Netk

∂Netk

∂cm,k

∂cm,k

∂wm,i

= −ηm
∂E

∂Ok
ϕ′k(Netk)w̄mxi

= ηm(tk −Ok)f ′k(Netk)w̄mxi.

Let a be a parameter involved in the antecedent. We have 4a = −ηa∂E/∂a,
where ηa is a small positive number. Then

4a = −ηa
∂E

∂Ok

∂Ok

∂a
= −ηa

∂E

∂Ok

∂Ok

∂Netk

∂Netk

∂wm

∂wm

∂a
.

Since
∂Netk

∂wm
=

∂Netk

∂w̄m

∂w̄m

∂wm
,

it follows that

4a = −ηa
∂E

∂Ok
ϕ′k(Netk)cm,k

∂w̄m

∂a

= ηa(tk −Ok)ϕ′k(Netk)cm,k
∂w̄m

∂wm

∂wm

∂a
.

Recall that wm denotes the strength of the m-th rule that was defined by

wm = A1(x1)tA2(x2)t · · · tAl(xl),

where t denotes a t-norm. Since a is a parameter involved in the membership
functions, wm is a function of a. Also, w̄m = wm/

∑
wi.

For further readings on neuro-fuzzy systems, the reader is referred to the
works in [13], [14], [15], [31], [32], [40], and [41].

2.4 The Theory of Evidence

2.4.1 Introduction

There are three types of uncertainty. The fuzziness comes about from the
absence of sharp boundaries separating classes of objects. The nonspecificity
comes about from the size of the set of alternatives and the strife comes about
from the conflicts among the available alternatives. Entropy measures fuzzi-
ness and is more or less a direct extension of entropy as known in probability
theory. If pi, 1 ≤ i ≤ n, is a discrete probability distribution, the entropy
function is defines as

H(p1, . . . , pn) = −
∑

pi log2 pi.

This function is zero when pi∗ = 1 and pj = 0, j 6= i∗ (i.e., when we are
certain that alternative i∗ will occur, and can be shown to reach a maximum
when pi = 1/n for all i (i.e., when all outcomes have equal probabilities).

2 Soft Computing Essentials 55

If A is a fuzzy set defined on a finite universe of discourse and A =
∑

αi/xi

with all the xi distinct, then the entropy is defined by

H(A) =
∑

h(A(xi)),

where h is a function from [0, 1] to [0, 1] satisfying the following properties:

h(x) = 0 if and only if x = 0 or x = 1.

h(x) is maximum at x = 1/2.

h(x) = h(1− x).

h is monotone increasing on [0, 1/2] and monotone decreasing on [1/2, 1].

Examples of such functions are h(x) = 1 − |2x − 1|, h(x) = 4x(1 − x), and
h(x) = −x log2 x− (1− x) log2(1− x).

It follows that H(A) is maximum at A(x) = 1/2 for all x; that is H is
maximum at the “maximal fuzzy set.” Also, H(A) = 0 if A(x) ∈ {0, 1} for
all x; that is H is 0 on standard nonfuzzy sets. Let A1/2 denote the standard
non-fuzzy set {x |A(x) ≥ 1/2}. If A1/2 denotes the membership in that set
and if h(x) = 1− |2x− 1|, it can be shown that

H(A) = 2
∑

i

|A(xi)−A1/2(xi)|.

So, H(A) is twice the Hamming distance of A to A1/2. Intuitively, the more
A is removed from the standard set A1/2, the higher the entropy of A is and
the more fuzzy A is.

In the continuous case, the entropy H can be defined as

H(A) =
∫

h(A(x)) dx.

2.4.2 Evidence Theory

The concepts of non specificity and strife are best defined in the general con-
text of evidence theory.

Definition 1. Let A be the nonempty family of subsets of the set X. A “fuzzy
measure” on < X,A > is a function g from A into [0, 1] such that the follow-
ing hold:

(1) g(∅) = 0 and g(X) = 1.

(2) If A ⊂ B ⊂ X then g(A) ≤ g(B).

56 Andre de Korvin, Hong Lin, and Plamen Simeonov

(3) If An is an increasing sequence of subsets in A (i.e., An ⊂ An+1 for
every n), and if ∪An ∈ A, then g(∪An) = lim g(An).

(4) If An is a decreasing sequence of subsets in A and ∩An ∈ A, then
g(∩An) = lim g(An).

Of course, if X is a finite set, then properties (3) and (4) are vacuous. The
interpretation of g(A) is “the total evidence” that some unknown element
belongs to the set A. From the definition it follows that

g(A ∩B) ≤ g(A) ∧ g(B) and g(A ∪B) ≥ g(A) ∨ g(B).

Note that a probability function is a special case of a fuzzy measure. At times,
properties (1), (2), and (3) will be the only properties assumed, and sometimes
properties (1), (2), and (4) will be the only properties assumed. Two fuzzy
measures are of particular importance: the belief and the plausibility. These
measures will be denoted by Bel and Pls.

Definition 2. Bel is defined as a function from the subsets of X to [0, 1] with
the following properties:

(1) Bel(∅) = 0 and Bel(X) = 1.

(2) Bel(A1 ∪ · · · ∪ An) ≥
∑

j Bel(Aj) −
∑

j<k Bel(Aj ∩ Ak) + · · · +
(−1)n+1Bel(A1 ∩ · · · ∩An).

If X is infinite we also require property (4) of fuzzy measures. Note that
Bel(A) + Bel(Ā) ≤ 1.

Pls is also defined as a function from subsets of X to [0, 1] satisfying the
following properties:

(1) Pls(∅) = 0 and Pls(X) = 1.

(2) Pls(A1 ∩ · · · ∩ An) ≤
∑

j Pls(Aj) −
∑

j<k Pls(Aj ∪ Ak) + · · · +
(−1)n+1Pls(A1 ∪ · · · ∪An).

If X is infinite, we also require property (3) of fuzzy measures. Note that
Pls(A) + Pls(Ā) ≥ 1.

Both Bel and Pls can be characterized by a third function called mass.

Definition 3. A mass m is a function from subsets of X to [0, 1] satisfying

m(∅) = 0 and
∑

A⊂X

m(A) = 1.

2 Soft Computing Essentials 57

It can be shown that if

h1(A) =
∑
B⊂A

m(B) and h2(A) =
∑

B∩A 6=∅

m(B),

then h1 is a belief function and h2 is a plausibility function. The mass m is
said to generate belief h1 and plausibility h2. Conversely, we have the follow-
ing:

If Bel is any belief function, then

m(A) =
∑
B⊂A

(−1)|A−B|Bel(B)

is a mass function that generates belief Bel.

If Pls is any plausibility function, then

m(A) =
∑
B⊂A

(−1)|A−B|(1− Pls(B̄))

is a mass function that generates plausibility Pls.

Whereas, as pointed out earlier, a fuzzy measure applied to a set A mea-
sures the total evidence that a partially known element belongs to A, m(A)
measures the evidence (not total) that a partially known object is precisely in
A (m(A) does not include, for example, any evidence that the object might
be in some subset of A). In this connection, it should be stressed that A ⊂ B
does not necessarily imply m(A) ≤ m(B). For example, if we have three
types of aircraft: bomber (B), fighter (F), and passenger plane (PP) – and we
are almost sure that the aircraft we are focusing on is a military plane, the
corresponding mass defined on X = {B,F,PP} could be

m({B,F}) = 0.9, m({B,F,PP}) = 0.1.

The reason m is small on {B,F,PP} is that evidence is strong the aircraft
is not any one of the three aircraft since PP is practically ruled out. On the
other hand, the total evidence for X is

Bel({B,F,PP}) = m({B,F}) + m({B,F,PP}) = 1.

2.4.3 Composition of Masses

Given a mass m, those subsets of X on which m is not zero are called the
focal elements of m. If m1 and m2 denote masses generated by independent
sources, then the composition of m1 and m2 is defined to be a mass whose
focal elements are the intersections of the focal elements of m1 and m2. The
composition mass is defined by

58 Andre de Korvin, Hong Lin, and Plamen Simeonov

(m1 ⊕m2)(A) =
∑

B∪C=A

m1(B)m2(C)/
∑

B∩C 6=∅

m1(B)m2(C).

In other words, we discount conflicting focal elements. We can rewrite the
above as follows:

(m1 ⊕m2)(A) =
∑

B∪C=A

m1(B)m2(C)/(1−K),

where
K =

∑
B∩C=∅

m1(B)m2(C).

One can define m1 ⊕ · · · ⊕mn inductively by

m1 ⊕ · · · ⊕mn = (m1 ⊕ · · · ⊕mn−1)⊕mn.

Example 1. Assume we have three persons who are suspected of some crime.
The three persons are John, James, and Jane. James and Jane are siblings.
There is a piece of evidence that indicates a male was involved in the crime
and the strength of the evidence (on a scale of 0 to 1) is 0.7. There is a slight
amount of evidence that Jane is actually the guilty one and the strength of
that evidence is 0.2. A totally different piece of evidence seems to indicate
that siblings were involved and the strength of that is 0.6. That second piece
of evidence seems to confirm what the previous evidence had shown: a slight
possibility that Jane was involved. The strength to support this assumption is
still 0.2. Putting these two pieces together, how strong is the evidence against
any single individual? Let m1 and m2 be the masses corresponding to the two
pieces of evidence. We have

m1{John, James} = 0.7, m1{Jane} = 0.2.

There is a floating .1 that we assign to the whole set as that .1 could be of
concern to any one of the individuals, so

m1{John, James, Jane} = 0.1.

Similarly,

m2{James, Jane} = 0.6, m2{Jane} = 0.2, m2{John, James, Jane} = 0.2.

We put the two pieces together by combining m1 and m2. Since the focal
elements of m1 ⊕ m2 are the intersections of the focal elements of m1 and
m2 and since {John} is not an intersection of two such focal elements, (m1 ⊕
m2){John} = 0. So, there is no evidence pointing to John being the sole guilty
person. Let

A = {John, James}, B = {Jane}, C = {James, Jane},

2 Soft Computing Essentials 59

and U = {John, James, Jane}. Then, K = m1(A)m2(B) = 0.14, 1−K = 0.86
and

(m1 ⊕m2)(A) = m1(A)m2(U)/(1−K) = 0.14/0.86 ≈ 0.16.

Thus, although there is no evidence against John alone, there is approximately
0.16 evidence that John or James did commit the crime, but we cannot de-
termine which of those two. Next, we have

(m1 ⊕m2)({James}) = m1(A)m2(C)/(1−K) = 0.42/0.86 ≈ 0.49.

Although none of the two pieces of evidence pointed to James acting alone,
pulling all the information together yields an evidence of approximately 0.49
that James was the sole perpetrator. Finally,

(m1 ⊕m2){Jane} =
(m1(B)m2(U) + m1(B)m2(b) + m1(B)m2(U)) + m1(U)m2(B))/(1−K)
= 0.22/0.86.

Whereas the separate pieces of evidence gave 0.2 evidence against Jane, the
combined evidence against Jane is slightly higher, approximately 0.26. Obvi-
ously, this type of reasoning can be used in object recognition problems where
features are known with specified probabilities.

2.4.4 Possibility Theory

A special case of evidence theory is provided by possibility theory. Here, the
mass has nested focal elements. Thus, if a mass has focal elements A1, · · · , An,
we have A1 ⊂ · · · ⊂ An. If this is so, it is straightforward to show that

Bel(A ∩B) = min{Bel(A),Bel(B)}

and
Pls(A ∪B) = max{Pls(A),Pls(B)}.

In this case, one often uses the terms necessity (Nec) and possibility (Pos)
instead of belief and plausibility. Again, it is straightforward to show that

Nec(A) = 1− Pos(Ā),
Nec(A) > 0 implies Pos(A) = 1,

Pos(A) < 1 implies Nec(A) = 0.

The following is an important theorem that we state without a proof.

Theorem 1. Every possibility function is uniquely determined by a possibility
distribution function r : X → [0, 1] so that Pos(A) = sup{r(x) |x ∈ A}. The
function r is defined by r(x) = Pos{x}. If, in addition, X is discrete (i.e.,
X = {x1, . . . , xn}), then 1 = r1 ≥ r2 ≥ · · · ≥ rn+1 = 0 and m(Ai) = ri − ri+1

where Ai = {x1, . . . , xi} and ri = r(xi) = Pos{xi}.

60 Andre de Korvin, Hong Lin, and Plamen Simeonov

Example 2. Let X = {x1, . . . , x7}. Let m be a mass on the subsets of X whose
focal elements are A2 = {x1, x2}, A3 = {x1, x2, x3}, A6 = {x1, . . . , x6},
and A7 = X. Note that the focal elements of m are nested: A2 ⊂ A3 ⊂ A6 ⊂
A7. Assume that

m(A2) = 0.3, m(A3) = 0.4, m(A6) = 0.1, m(A7) = 0.2.

Then since ri = Pos{xi} =
∑7

j=i m(Aj), we obtain r1 = 1, r2 = 1, r3 = 0.7,
r4 = 0.3, r5 = 0.3, r6 = 0.3, and r7 = 0.2. Now, for example,

Poss{x3, x4, x5} = sup{r3, r4, r5} = 0.7.

2.4.5 Relation of Possibility to Fuzzy Sets

Let F be a fuzzy subset of X. If F is used as a possibility distribution function,
taking into account the discussion in the previous section, it is natural to define
a possibility associated with F by

PosF (A) = supx∈AF (x).

It is also natural to define

NecF (A) = 1− PosF (Ā).

Note that when A is a standard crisp set, then (see Section 2.4)

PosF (A) = supx(A(x) ∧ F (x)) = Poss(A,F).

Example 3. Let F be a fuzzy set defined by F = 0.2/1+0.4/2+0.5/3+1/4+
0.5/5 + 0.4/6 + 0.2/7. We now order the elements of X in decreasing order of
their memberships in F . We then have the list 4, 3, 5, 2, 6, 1, 7. The sets Ai are:
A1 = {4}, A2 = {4, 3}, A3 = {4, 3, 5}, A4 = {4, 3, 5, 2}, A5 = {4, 3, 5, 2, 6},
A6 = {4, 3, 5, 2, 6, 1}, and A7 = {4, 3, 5, 2, 6, 1, 7}. Using the formula m(Ai) =
ri − ri+1, where ri = F (xi) (with r1 = 1 and r8 = 0), we see that the focal
elements of m are A1, A3, A5, and A7. Then, for example,

Poss{x2, x5, x7} = max{r2, r5, r7} = max{F (2), F (5), F (7)} = 0.5.

On the other hand, m(A1) = 0.5, m(A3) = 0.1, m(A5) = 0.2, and m(A7) =
0.2, so

Pls{x2, x5, x7} =
7∑

j=2

m(Aj) = .5.

The two computations yield the same value.

It is clear that if focal elements are single points, the mass is then a prob-
ability distribution and Bel = Pls and coincide with probability measures.
Thus, in general, Bel < Pls and can be viewed as the lower and the upper
bound of some unknown probability measure. In some sense, Pls − Bel is a
measure of the uncertainty regarding the determination of some appropriate
probability measure.

2 Soft Computing Essentials 61

2.4.6 Nonspecificity

Let A be a standard crisp set. The nonspecificity of A is defined as

N(A) = log2 |A|,

where, of course, |A| denotes the cardinality of A. Intuitively, this is how
many splittings of A into equal halves is required to arrive at a single answer.
Clearly, the larger the cardinality of A is, the higher the nonspecificity is.
Another interpretation is the number of bits required to represent all of the
elements of A. If A represents the set of currently viable alternatives and if new
information comes in that reduces the number of viable alternatives to a set B
where B ⊂ A, then the reduction of uncertainty is given by N(A)−N(B) =
log2(A/B). This could be used as a measure of the amount of information
received, since the information received could reasonably be identified with
the reduction in uncertainty.

How can this be generalized to the case where A is a fuzzy set? We define

N(A) =
1

h(A)

∫ h(A)

0

log2 |Aα| dα.

Here, h(A) denotes the height of A (i.e., h(A) = supxA(x)). Furthermore, |Aα|
denotes the α-cut of A; that is Aα is a crisp set defined by Aα = {x |A(x) ≥ α}
and |Aα| denotes the length of Aα (assuming A is such that Aα is an interval
for every α ≥ 0).

The obvious analog for the discrete case is

N(A) =
1

h(A)

n−1∑
i=0

(log2 |Aαi
|)(αi+1 − αi),

where A =
∑n

i=1 αi/xi, with αn ≥ · · · ≥ α1 ≥ α0 = 0. Clearly, if A is a
crisp set, then h(A) = 1, 1 = α1 ≥ α0 = 0, |Aα| = |A|, and we get back the
nonspecificity formula for crisp sets.

If we have a possibility distribution r =< r1, . . . , rn > with 1 = r1 ≥ · · · ≥
rn ≥ rn+1 = 0, the nonspecificity of r is defined by

N(r) =
n∑

i=2

(ri − ri+1) log2 i.

The reason N(r) is defined as above is the following: Let F be a fuzzy set.
Denote by rF a possibility distribution associated with F to be defined later.
Then an interesting result is

N(rF) = N(F),

provided these quantities are redefined in the context of the theory of evidence.
Given a mass m, the nonspecificity of m is defined as

62 Andre de Korvin, Hong Lin, and Plamen Simeonov

N(m) =
∑

A |m(A) 6=0

m(A) log2 |A|,

that is, the sum is over all focal elements of m. Thus, N(m) is the averaged
nonspecificity over all focal elements of m. Now, given a fuzzy set F over a
finite universe of discourse X, a mass mF is generated that has focal elements
Ai = {x1, . . . , xi}, i = 1, . . . , n, and a possibility distribution rF is generated
with rF (xi) = PosF (xi) and mF (Ai) = ri − ri+1 (see Section 4.4). Let rF,i =
rF (xi). Clearly, |Ai| = i. Then

N(mF) =
n∑

i=1

m(Ai) log2 |Ai| =
n∑

i=2

(rF,i − rF,i+1) log2 i = N(rF).

We thus define the nonspecificity of a fuzzy set F by

N(F) = N(mF) = N(rF).

Note that if m is a probability distribution, its focal elements are singletons
and m, and in that case, since log2 1 = 0, we have N(m) = 0. Thus, a
probability distribution has zero nonspecificity .

2.4.7 Strife

The strife function will generalize the Shanon entropy function and is again
best defined in the context of the theory of evidence. We start by defining
conflict over a subset A of X as

Con(A) =
∑
B

m(B)
|A−B|
|A|

.

Note that if A ⊂ B, then |A − B| = 0; that is sets that contain A are not
counted in the conflict because A ⊂ B implies A→ B (A implies B). So if B
follows from A, it should not contribute to the conflict generated by A. We
would like the strife function to generalize the concept of entropy function so
we start by looking at the special case where m is a probability distribution
p. In this case,

Con({x}) =
∑
y 6=x

p(y) = 1− p(x).

So for the probability distribution the entropy is

−
∑

x

p(x) log2 p(x) = −
∑

x

p(x) log2(1− Con({x})).

Then it is natural to define the strife function, relative to a mass m by

S(m) = −
∑
A

m(A) log2(1− Con(A)),

2 Soft Computing Essentials 63

where the sum is, of course, over the focal sets of m. Note that as Con(A)
increases from 0 to 1, − log2(1 − Con(A)) increases from 0 to ∞. Also, note
that Con(A) is the averaged proportion of elements of A that fail to be in B
where B is a focal subset of A. The strife S(m) can be rewritten as

S(m) = −
∑
A

m(A) log2[
∑
B

m(B)(1− |A−B|/|A|)]

= −
∑
A

m(A) log2[
∑
B

m(B)|A ∩B|/|A|]

=
∑
A

m(A) log2 |A| −
∑
A

m(A) log2[
∑
B

m(B)|A ∩B|].

If we denote by R(m) the second sum on the right-hand side, we have

S(m) = N(m)−R(m).

In particular, we can now define strife in the context of possibility theory, and
therefore in the context of fuzzy sets. Recall that in the context of possibility
theory we have nested focal elements A1 ⊂ · · · ⊂ An, where Ai = {x1, · · · , xi},
ri = r(xi), 1 = r1 ≥ · · · ≥ rn ≥ rn+1 = 0 with m(Ai) = ri − ri+1. So in this
case,

S(m) = N(m)−R(m) =
n∑

i=2

(ri − ri+1) log2 i−R(m).

The quantity R(m) can be written as

R(m) =
n∑

i+1

(ri − ri+1) log2

 n∑
j=1

(rj − rj+1)min{j, i}

 .

So the final form of S(m) is

S(m) = N(m)−
n∑

i=1

(ri − ri+1) log2

i/
i∑

j=1

rj

 .

As a special case, the strife generated by a fuzzy set can be obtained (assuming
the set is normal and defined on a discrete universe of discourse) by setting

r1 = F (x1) ≥ r2 = F (x2) ≥ · · · ≥ rn = F (xn) ≥ rn+1 = 0.

The total uncertainty present in a decision problem is the sum of the nonspeci-
ficity and the strife (i.e., N(m) + S(m)). Often a viable decision is one that
minimizes uncertainty. Our formulation therefore allows for decision mak-
ing;for example, if alternate outputs are fuzzy sets Fi, we select the decision
that minimizes N(mFi

) + S(mFi
).

For additional work on the theory of evidence and related topics, we refer
the reader to [19], [33], and [7].

64 Andre de Korvin, Hong Lin, and Plamen Simeonov

2.5 Rough Sets and Fuzzy Sets

2.5.1 Introduction

Let X be the universe of discourse. Assume that we have an equivalence
relation R on X. Then R is a function from X ×X into {0, 1} that satisfies

R(x, x) = 1 for all x ∈ X,

R(x, y) = 1 implies R(y, x) = 1,

R(x, y) = 1 and R(y, z) = 1 implies R(x, z) = 1.

Let [x] denote the class of equivalence of x (i.e., x = {y |R(x, y) = 1}).
It is well known that distinct classes are disjoint and, moreover, classes of
equivalence form a partition of X. Let A be crisp subset of X. We define the
lower approximation and the upper approximation of A by

R(A) =
⋃

[x]⊂A

[x] and R(A) =
⋃

[x]∩A 6=∅

[x].

A rough set is defined as a representation of a set A by its lower approximation
and its upper approximation. Thus, as in fuzzy sets, the boundary is not
sharp; it is caught somewhere between the lower and the upper approximation.
Generalization of this concept can take two forms: The set A is fuzzy or the
set A is crisp but the relation R is fuzzy. If R is a fuzzy relation, it is taken
to be a similarity relation; that is,

R(x, x) = 1 for all x ∈ X,

R(x, y) = 1 implies R(y, x) = 1,

R(x, z) ≥ maxymin{R(x, y), R(y, z)}.

If R is a similarity relation, we define classes of similarity. If x ∈ X, then [x]
denotes the function whose value at y is R(x, y). Of course, it is not true any
more that distinct classes are disjoint. In general, if R and A are crisp, then

R(A) ⊂ A ⊂ R.

If R(A) = A = R(A), then A is said to be definable. Rough sets are naturally
generalized in the context of an information system. By an information system
we mean the quadruple < X, Q, V, ρ >, where Q is partitioned into two sets
C and D (conditions and decisions). The set V is the set of values and ρ is a
function from X × Q into V , where the interpretation of ρ(x, q) is the value
of q for x. Table 2.1 illustrates these concepts.

A possible interpretation is the following: There are five patients x1, · · · , x5.
Two conditions denoted by c1 and c2 are observed in these patients. In column
c1, the values 0 and 1 denote the absence or presence of some symptom. In
column c2, L and S denote a large or a small presence of a second symptom.

2 Soft Computing Essentials 65

x

x

x

x

x

0

0

1

1

1

L

L

L

S

S

0

1

0

0

1

c c d

1

2

3

5

4

1 2

C D

Table 2.1: patients-symptoms-disease

In the column d, the values 0 and 1 denote the absence or the presence of some
disease. The space X is then partitioned into sets of patients having the same
symptoms. The partition is [x1] = [x5] = {x1, x5}, [x2] = [x3] = {x2, x3}, and
[x4] = {x4}. Let A denote the set of sick patients. It is clear that A is not
definable in terms of symptoms, as x2 and x3 have the same symptoms but
x2 ∈ A and x3 /∈ A. How does such a discrepancy come about? Evidently, the
physician has used indicators other than c1 and c2 to make such a judgment.
It may even be the case that the physician is not conscious of how such a
judgment was made. Thus, A is not definable in terms of c1 and c2 and the
boundary of A is not clearly determined. In this case,

A = {x2, x4}, R(A) = {x4}, R(A) = {x2, x3, x4}.

It is precisely the size of the set R(A)−R(A) that reflects the nondefinibility
of A in terms of the conditions of Q. In that sense, the lower and the upper
approximation of A play a role somewhat analogous to Bel(A) and Pls(A),
where Pls(A) − Bel(A) is a reflection of the uncertainty of A. It should be
noted that whereas A is not definable in terms of the conditions, R(A) and
R(A) are, in fact,

R(A) = {xi | c1 = 1, c2 = L},
R(A) = {xi | c1 = 1, c2 = S} ∩ {xi | c1 = 1, c2 = L}.

2.5.2 Two Operations on Interval Type 2 Sets

The purpose of this subsection is to illustrate by a simple example how one
can extract rules from examples using rough sets. The example deals with
linking symptoms to diagnosis. In Section 2.2.3 we have seen a number of
ways to define A → B, where A and B are fuzzy sets. In this example, for
illustrative purposes, we define

(A→ B)(x) = (1−A(x)) ∨B(x).

Unfortunately, uncertainty is all too often present in symptoms as well as
the diagnosis. Symptoms and diagnosis fail to partition their universes of

66 Andre de Korvin, Hong Lin, and Plamen Simeonov

discourses and overlaps are often present. We now define two operators on
fuzzy sets that will be of importance in this subsection. Let A and B be fuzzy
sets. We set

I(A,B) = minxmax{1−A(x), B(x)},
J(A#B) = maxxmin{A(x), B(x)}.

Note that if A and B are crisp sets, then

I(A,B) =
{

1 if A ⊂ B
0 otherwise

and

J(A#B) =
{

1 if A ∩B 6= ∅
0 otherwise.

Thus, I(A,B) and J(A,B) should intuitively measure how much A is a subset
of B and much A intersects B (when A and B are fuzzy). One could also
rewrite I(A,B) and J(A#B) as

I(A,B) = min(A→ B)(x) and J(A#B) = Poss(A,B).

It can also be easily checked that

I(A,B) = 1− J(A#B̄).

In a number of situations it might be difficult to exactly determine the mem-
bership functions of sets A and B. We thus assume now that A and B are
interval type 2 sets; for example,

A =
∑

[ai, bi]/xi.

Thus, the membership of xi in A is some unknown value in the interval [ai, bi].
We use interval arithmetic to define the complement of A as

1	A =
∑

[1− bi, 1− ai]/xi.

We also define

m̃ax{[ai, bi], [aj , bj]} = [max(ai, aj),max(bi, bj)],
m̃in{[ai, bi], [aj , bj]} = [min(ai, aj),min(bi, bj)].

Then when A and B are interval type 2 sets, we extend the operators I and
J as follows:

Ĩ(A,B) = m̃inxm̃ax(1	A(x), B(x)),
J̃(A#B) = m̃axxm̃in(A(x), B(x)).

Note that for fixed x, 1 	 A(x) and B(x) are intervals. Thus, m̃ax(1 	
A(x), B(x)) is an interval that depends on x and, therefore, m̃inxm̃ax(1 	
A(x), B(x)) is also an interval (that does not depend on x). The same obser-
vation holds for J̃ . Thus, in this more general case, the degree to which A is
a subset of B and the degree to which A and B intersect are subintervals of
interval [0, 1].

2 Soft Computing Essentials 67

2.5.3 Extracting Rules from Data

We illustrate rule extraction from data by a simple example of two conditions.
Condition 1 is the size of a tumor, which could be large or small. Condition
2 is the texture of the tumor, which can be hard or pliable. The diagnosis is
that patient is in stage A or stage B. Of course, no sharp boundaries exist
between large and small, between hard and pliable, and between stage A and
stage B. Intuitively speaking, the operators Ĩ and J̃ will generate the lower
and the upper approximations to stages A and B. The conditions and the
corresponding stages on five patients are shown in the table below.

Patient Condition 1 Condition 2 Diagnosis

x1 [0.2,0.4]/L+[0.7,0.9]/S [0.1,0.3]/H+[0.8,1]/P [0.2,0.4]/DA+[0.5,0.7]/DB

x2 [0.3,0.5]/L+[0.6,0.8]/S [0.9,1]/H+[0.6,0.9]/P [0.6,0.9]/DA+[0.4,0.6]/DB

x3 [0.6,0.9]/L+[0.2,0.5]/S [0.5,0.7]/H+[0.5,0.7]/P [0.5,0.6]/DA+[0.8,0.9]/DB

x4 [0.7,0.8]/L+[0.4,0.6]/S [0.2,0.4]/H+[0.7,0.8]/P [0.5,0.8]/DA+[0.1,0.2]/DB

x5 [0.1,0.4]/L+[0.6,0.7]/S [0.1,0.2]/H+[0.5,0.9]/P [0.3,0.4]/DA+[0.1,0.2]/DB

This above table generates the following interval type 2 sets:

L = [0.2, 0.4]/x1 + [0.3, 0.5]/x2 + [0.6, 0.9]/x3 + [0.7, 0.8]/x4 + [0.1, 0.4]/x5,

S = [0.7, 0.9]/x1 + [0.6, 0.8]/x2 + [0.2, 0.5]/x3 + [0.4, 0.6]/x4 + [0.6, 0.7]/x5,

H = [0.1, 0.3]/x1 + [0.9, 1]/x2 + [0.5, 0.7]/x3 + [0.2, 0.4]/x4 + [0.1, 0.2]/x5,

P = [0.8, 1]/x1 + [0.6, 0.9]/x2 + [0.5, 0.7]/x3 + [0.7, 0.8]/x4 + [0.5, 0.9]/x5,

DA = [0.2, 0.4]/x1 + [0.6, 0.9]/x2 + [0.5, 0.6]/x3 + [0.5, 0.8]/x4 + [0.3, 0.4]/x5,

DB = [0.5, 0.7]/x1 + [0.4, 0.6]/x2 + [0.8, 0.9]/x3 + [0.1, 0.2]/x4 + [0.1, 0.2]/x5.

Thus, conditions and diagnoses become interval type 2 sets over the universe of
patients. The interpretation is straightforward; for example, x3 is an example
of large tumor L with membership between 0.6 and 0.9. These sets in turn
generate rules. For example,

L ∩H = [0.1, 0.3]/x1 + [0.3, 0.5]/x2 + [0.5, 0.7]/x3 + [0.2, 0.4]/x4

+[0.1, 0.2]/x5,

m̃ax(1	 (L ∩H), DA) =
[0.7, 0.9]/x1 + [0.6, 0.9]/x2 + [0.5, 0.6]/x3 + [0.6, 0.8]/x4 + [0.8, 0.9]/x5,

and, therefore, Ĩ((L∩H), DA) = [0.5, 0.6]. This generates the following certain
rule (lower approximation): If the tumor is large and hard, the patient’s stage
is A with belief between 0.5 and 0.6. Proceeding in this way, a total of eight
certain (or belief) rules would be collected (four for DA and four for DB). A
similar computation would produce J̃((L∩P)#DA) = [0.5, 0.8] and generate
the possible rule: If the tumor is large and pliable, the patient’s stage is A
with possibility between 0.5 and 0.8. This way a total of 16 rules would be
generated. Eight of them are certain and eight of them are possible.

68 Andre de Korvin, Hong Lin, and Plamen Simeonov

For additional information on rough sets, see [35], and for combinations of
rough sets and fuzzy sets see, [3].

2.6 Genetic Algorithms

2.6.1 Introduction

Genetic algorithms imitate natural evolution to solve optimization problems
by finding a good solution through a search procedure. The basic construct of a
generic algorithm is a chromosome that encodes a possible solution. An initial
population of chromosomes is initiated and the population is evolved through
three operations: reproduction, crossover, and mutation. The reproduction in-
volves the selection of chromosomes that generate high values for the fitness
function. A number of steps need to be taken to run a generic algorithm. The
first step is to pick a representation for possible solutions. Typically, potential
solutions are represented by a string of numbers and/or characters. Such a
string is called a chromosome. For example, a neural net could be represented
as a string of weights and biases. Thus, the corresponding chromosome would
be a string of numbers. The fitness function measures how good a solution rep-
resented by a chromosome is. For neural nets, an appropriate fitness function
could be defined through some training set {(I1, d1), . . . , (Im, dm)}, where di

denotes the desired target when input Ii is presented, and the fitness function
might be defined as

F (SpecificNet) = −
m∑

i=1

(di − ai)2,

where ai is the activation of the net for input Ii.
Reproduction: Given an initial population, chromosomes are selected with
probability proportional to their fitness. The selected chromosomes are copied
into a set (known as the mating pool).
Crossover: Pairs of chromosomes in the mating pool are selected randomly
and corresponding elements of each are swapped randomly. The diagram in
Figure 2.33 shows a commonly used crossover.

a1 a2

b3 b4

a1 a2 b3 b4an

anbm

bm

b1 b2

a3 a4
Crossvoer
Operation

b1 b2 a3 a4

Chromosome 1

Chromosome 2

Crossvoer
Point

Fig. 2.33

Typically, crossover takes place with some probability and the crossover
point is chosen randomly.

2 Soft Computing Essentials 69

em Mutation: After crossover, each element of the string is changed with
small probability. Thus, the final result after crossover is performed might be
as shown in Figure 2.34.

b1 b2 a3 a4 na

a1 a2 b3 a4 mb5b

Fig. 2.34

In this example the first string obtained after crossover was subject to a
mutation, the b4 element having changed into a4 while no mutation took place
in the second string.

A typical generic algorithm can be outlined as follows:
1. Create a random initial population of chromosomes (representing potential
solutions).

2. Repeat until some termination criterion is met:
a. Evaluate the fitness of each chromosome.
b. Reproduce (i.e., select chromosomes with probability proportional to

their fitness and enter them in the mating pool).
c. Crossover pair.
d. Perform mutation (with small probability).

These new individuals form the new mating pool. Go back to step 2.

The termination criterion could be reached when the best chromosome
in the mating pool is fit enough and/or the number of iterations reaches a
specified number.

2.6.2 Designing a Fuzzy System

The success of the previously outlined algorithm depends on a number of fac-
tors. A key factor is a viable encoding of potential solutions into chromosomes.
We illustrate a possible way to encode fuzzy systems (i.e., fuzzy sets of rules).
When designing a fuzzy system, it is often not obvious how to partition the
input and output spaces, that is, it is not obvious how many rules to use.
Typically, the general shape of the membership functions is determined but
the exact functions are not, as they depend on parameters. For example, we
may decide to use trapezoidal functions, but the widths of their bases could
be specified as unknown parameters. A possible chromosome corresponding to
a set of fuzzy rules could be constructed as a string consisting of three pairs:
the input parameters, the output parameters, and the rule identifiers. To keep
the example simple, assume we are dealing with rules of the following form: If
x is A, then y is B (i.e., one input, one output). A typical chromosome could
be as shown in Figure 2.35.

70 Andre de Korvin, Hong Lin, and Plamen Simeonov

r1 r2 r3

Input Parameters Output Parameters Rule Identifiers

i1 i2 i3 j1 j2 j3 j4

Fig. 2.35

Assume i1, i2, and i3 are the values of the parameters identifying the fuzzy
sets A1, A2, and A3, respectively. The values j1, j2, j3, and j4 identify the
fuzzy sets B1, B2, B3, and B4, respectively. Cells labeled r1, r2, and r3 refer
to the rules 1, 2, and 3, respectively. A value ri = 0 means rule i should be
taken out.

Let r1 = 2, r2 = 0, and r3 = 4. This chromosome corresponds to the
following set of rules:

If x is A1, then y is B2.
If x is A3, then y is B4.

Assume this chromosome is paired off with the chromosome

i′1 i′2 i′3 i′4 i′5 j′1 j′2 r′1 r′2 r′3 r′4 r′5,

where i′1, · · · , i′5 are values of parameters determining the fuzzy sets A′
1, · · · , A′

5,
j′1 and j′2 determine B′

1 and B′
2, respectively, and r′1 = 1, r′2 = 2, r′3 = 1,

r′4 = 0, and r′5 = 2. Then the corresponding system is
If x is A′

1, then y is B′
1.

If x is A′
2, then y is B′

2.
If x is A′

3, then y is B′
1.

If x is A′
5, then y is B′

2.

If we pick a crosspoint between position 2 and 3, after crossover we have
the chromosomes

i1 i2 i′3 i′4 i′5 j′1 j′2 r′1 r′2 r′3 r′4 r′5

and
i′1 i′2 i3 j1 j2 j3 j4 r1 r2 r3.

Perform a mutation on the first chromosome changing r′3 = 1 to r′3 = 0. The
corresponding systems are as following:

If x is A1, then y is B′
1.

If x is A2, then y is B′
2.

If x is A′
5, then y is B′

2

and

If x is A′
1, then y is B2.

If x is A3, then y is B4.

2 Soft Computing Essentials 71

The fitness function could be the negative of the error made by the system
on a specified training set. After a number of iterations, the best chromosome
in the current mating pool would generate the best current fuzzy system.

For more detailed information on genetic algorithms, see [12], and for
combining genetic algorithms with fuzzy logic, see [24].

2.7 Conclusion

We presented some of the important methodologies of soft computing. These
important tools include neural nets, fuzzy logic, neuro-fuzzy systems, the the-
ory of evidence, rough sets, and genetic algorithms. The main idea that should
emerge from this overview is that these methods are not competing but are
complementary methods. Adaptive nets use input/output specifications. Such
nets form a black box and there is usually no clear indication on how the
decisions are made. The advantage of this methodology is that the system
learns to adapt as input/output specifications are defined. Fuzzy logic, on the
other hand, is a very convenient tool to represent knowledge as a set of rules.
Neuro-fuzzy systems combine the advantages of the two previous methods and
seamlessly integrate linguistic and numerical information. Two applications
were presented: forecasting time series and designing a controller. Although
we indicated several ways to construct membership functions, in certain cases
such constructions might be difficult to make and some uncertainty regarding
membership functions must be taken into consideration. Fuzzy sets of type 2
is a possible approach to this problem.

Fuzzy sets, neural nets, and neuro-fuzzy systems were then compared as
possible approaches to designing an autonomous vehicle. The theory of evi-
dence was then presented. This methodology has a built-in capability to use
the following type of rules:

If (objecti, atributei, valuei), i = 1, . . . , n, then (decision1,. . . ,decisionk)
(x confirm).

Here, x ∈ [0, 1]. Such a rule generates a mass m. If the antecedent is
satisfied, then m{decision1, . . . ,decisionk} = x. A set of such rules generates
a set of masses, and composing these masses yields a mass representing the set
of rules. That resulting mass highlights the appropriate decision to consider.
Nonspecificity, which is an uncertainty related to how large the set of choices
is was discussed in the context of evidence theory. Similarly, the concept of
strife, that is the uncertainty related to the conflict between choices, was also
cast in the concept of evidence theory. Rough sets were then introduced. As
with fuzzy sets, the boundary of a rough set is not a crisp set. There is a lower
and an upper approximation. In was then shown how a diagnosis problem in
which no sharp boundaries exist between conditions and between diagnoses
could generate rules by use of the rough sets methodology. We then have two

72 Andre de Korvin, Hong Lin, and Plamen Simeonov

types of rules: the certain and the possible rules corresponding to lower and
upper approximations. Finally, genetic algorithms were introduced. It was
shown how a good set of fuzzy rules could be obtained for some specified
problem using genetic algorithms.

It is clear that complex problems typically require hybrid methods as the
sensible approach. For example, in certain cases it may be convenient to con-
struct the fuzzy part of a neuro-fuzzy system using genetic algorithms and
then evolve the neural part using, for example, the swarm method. Future
directions might also incorporate the methodology of fuzzy sets of type 2 into
such hybrid methods. For hybrid methods and various approaches to uncer-
tainty, we refer the reader to [17] and [20].

Aknowledgment: The authors would like to thank Dr. Youn Sha-Chan who
created all figures in this chapter.

References

1. Bandler, W., Kohout, L.J.: On the general theory of relational morphisms. In-
ternational Journal of General Systems 13, 47–68 (1986)

2. Berenji, H.R., Khedkar, P.: Learning and tuning fuzzy logic controllers through
reinforcements. IEEE Transactions on Neural Networks 3(5), 724–740 (1992)

3. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: R. Slovin-
ski (ed.) Intelligent Decision Support, pp. 203–232. Kluwer Academic Publishers,
Norwell, MA (1992)

4. Eberhart, R.C., Shi, Y.: Particle swarm optimization: Developments, applica-
tions, and resources. In: Proceedings of the 2001 Congress on Evolutionary Com-
putation CEC2001, pp. 81–86. IEEE Press, Los Alamitos, CA (2001)

5. Grossberg, S.: A neural model of attention, reinforcement and discrimination
learning. International Review of Neurobiology 18, 263–327 (1975)

6. Hagan, M., Demuth, H., Beale, M.: Neural Network Design. PWS Publishing
Company, Boston, MA (1996)

7. Harmanec, D., Klir, G.J.: Measuring total uncertainty in Dempster-Shafer the-
ory: A novel approach. International Journal of General Systems 22(4), 405–419
(1994)

8. Haykin, S.: Neural Networks: A Comprehensive Foundation. MacMillan, New
York (1994)

9. Hecht–Nielsen, R.: Counterpropagation networks. In: M. Caudill, C. Butler
(eds.) IEEE First International Conference on Neural Networks (ICNN’87), Vol.
II, pp. II-19–32. IEEE, San Diego, CA (1987)

10. Hellendorn H., Thomas C.: Defuzzification in fuzzy controllers. Journal of In-
telligent and Fuzzy Systems, 1(2), 109-123 (1993)

11. Hinton, G., Sejnowski, T.: Learning and relearning in Boltzmann machines. In:
Rummelhart, D., McClelland, J. (eds.) Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition. Volume 1: Foundations, pp. 283–335,
MIT Press, Cambridge, MA. (1986)

12. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor (1975)

2 Soft Computing Essentials 73

13. Jang, J.S.R.: Fuzzy modeling using generalized neural networks and Kalman
filter algorithm. In: Proceedings of the Ninth National Conference on Artificial
Inteligence (AAAI–91), pp. 762–767 (1991)

14. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man, and Cybernetics 23, 665–684 (1993)

15. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing.
Prentice-Hall, Englewood Cliff, NJ (1997)

16. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of
the IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE
Service Center, Piscataway, NJ (1995)

17. Klir, G.J.: Developments in uncertainty-based information. Advances in Com-
puters 36, 255–332 (1993)

18. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice-Hall, Englewood
Cliff, NJ (1995)

19. de Korvin, A., Deeba, E., Kleyle, R.: Knowledge acquisition using rough sets
when membership values are intervals. Mathematical Modeling and Scientific
Computing 1, 470–479 (1993)

20. de Korvin, A., Hashemi, S., Sirisaengtaksin, O.: A body of evidence approach
under partially specified environment. Journal of Neural, Parallel and Scientific
Computation 13, 91-106 (2005)

21. de Korvin, A., Kleyle, R., Lea, R.: An evidence approach to problem solving
when a large number of knowledge systems are available. International Journal
of Intelligent Systems 5, 293–306 (1990)

22. de Korvin, A., Modave, F., Kleyle, R.: Paradigms for decision making under in-
creasing levels of uncertainty. International Journal of Pure and Applied Math-
ematics 21, 419–430 (2005)

23. Kosko, B.: Bidirectional associative memories. IEEE Transactions on Systems,
Man, and Cybernetics 18, 49–60 (1988)

24. Lee, M.A., Takagi, H.: Dynamic control of genetic algorithms using fuzzy logic
techniques. In: S. Forrest (ed.) Proceedings of the Fifth International Conference
on Genetic Algorithms, pp. 76–83. Morgan Kaufmann, San Mateo, CA (1993)

25. Mabuchi, S.: A proposal for defuzzification strategy by the concept of sensitivity
analysis. Fuzzy Sets and Systems 55, 1–14 (1993)

26. Mamdami, E.H., Gaines, B.R. (eds.): Fuzzy Reasoning and Its Applications.
Academic Press, London (1981)

27. Mamdani, E.H.: Applications of fuzzy logic to approximate reasoning using lin-
guistic systems. IEEE Transactions on Computing 26, 1182–1191 (1977)

28. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New
Directions. Prentice-Hall, Upper Saddle River, NJ (2001)

29. Mendel, J.: On the importance of interval sets in type-2 fuzzy logic systems. In:
Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International
Conference, pp. 1647–1652 (2001)

30. Mendel, J., John, R.: Type-2 fuzzy sets made simple. IEEE Transactions on
Fuzzy Systems 10(2), 117–127 (2002)

31. Mizutani, E., Jang, J.S.R.: Coactive neural fuzzy modeling. In: IEEE Interna-
tional Conference on Neural Networks (ICNN’95), Vol. 2, pp. 760–765. IEEE,
Perth, Western Australia (1995)

32. Mizutani, E., Jang, J. S. R., Nishio, K., Takagi, H., Auslander, D. M.: Coactive
neural networks with adjustable fuzzy membership functions and their appli-

74 Andre de Korvin, Hong Lin, and Plamen Simeonov

cations. In: International Conference on Fuzzy Logic and Neural Networks, pp.
581–582 (1994)

33. Mrózek, A.: Rough sets and some aspects of expert systems realization. In: Sev-
enth Workshop on Expert Systems and their Applications, pp. 597–611 (1987)

34. Ovchinikov S. V.: Representation of transitive fuzzy relations. In: Skala, Termini,
and Trillas (eds.) Aspects of Vagueness, 105–118, Boston, MA (1984)

35. Pawlak, Z.: Rough sets. International Journal of Computer and Information
Sciences 11(5), 341–356 (1982)

36. Ruan, D., Kerre, E.E.: Fuzzy implication operators and generalized fuzzy
method of cases. Fuzzy Sets Systems 54(1), 23–37 (1993)

37. Saaty, T.L.: Modeling unstructured decision problems: A theory of analytical
hierarchies. In: Proceedings of the First International Conference on Mathemat-
ical Modeling, University of Missouri- Rolla, Vol. 1, pp. 59–77 (1977)

38. Saaty, T.L.: The Analytic Hierarchy Process. McGraw–Hill, New York (1980)
39. Skapura, D.M.: Building Neural Networks. ACM Press/Addison–Wesley Pub-

lishing Co., New York, NY, USA (1995)
40. Takagi, H., Hayashi, I.: NN–driven fuzzy reasoning. International Journal Ap-

proximate Reasoning 5, 191–212 (1991)
41. Takagi, H.: Fusion techniques of fuzzy systems and neural networks, and fuzzy

systems and genetic algorithms. In: B. Bosacchi, J.C. Bezdek (eds.) Applications
of Fuzzy Logic Technology, Proc. of the Society of Photo–Optical Instrumenta-
tion Engineers (SPIE) Conference, SPIE Vol. 2061, pp. 402–413 (1993)

42. Tong, R.M.: An annotated bibliography of fuzzy control. In: M. Sugeno (ed.) In-
dustrial Applications of Fuzzy Control, pp. 249–269. Elsevier Science Publishers,
Amsterdam (1985)

43. Weber, S.: A general concept of fuzzy connectives, negations and implications
based on t-norms and t-conorms. Fuzzy Sets and Systems 11, 115–134 (1983)

44. Yager, R.R.: Approximate reasoning as a basis for rule based expert systems.
IEEE Transactions on Systems, Man and Cybernetics 14 (1984)

45. Yager, R.R., Filev, D.P.: On the issue of defuzzification and selection based on
a fuzzy set. Fuzzy Sets and Systems 55, 255–273 (1993)

3

Relations Between Interval Computing and
Soft Computing

Vladik Kreinovich

Department of Computer Science, University of Texas at El Paso, 500 W.
University, El Paso, TX 79968, USA. vladik@utep.edu

This volume is about knowledge processing with interval and soft computing
(i.e., about techniques that use both interval and soft computing to process
knowledge and about the results of applying these techniques). To better un-
derstand these techniques, in Chapter 1 we described fundamentals of interval
computing and in Chapter 2 we described the fundamentals of soft computing.
Now it is time to explain how these techniques are related and how they can
be combined. Some examples of such a relation were already given in Chap-
ter 2 (e.g., interval-valued fuzzy sets). Now it is time to provide a systematic
description of this relation. After this chapter, we will be ready to describe
how to combine interval and fuzzy techniques and how the resulting combined
techniques can be applied to real-life problems.

This chapter starts with a brief reminder of why data processing and
knowledge processing are needed in the first place, why interval and fuzzy
methods are needed for data and knowledge processing, and which of the
possible data and knowledge processing techniques we should use. Then we
explain how these reasonable soft computing techniques are naturally related
with interval computing. Finally, we explain the need for interval-valued fuzzy
techniques - techniques which will be used a lot in our future applications - and
how the transition to such techniques is also related to interval computing.

3.1 Why Data Processing and Knowledge Processing
Are Needed in the First Place: A Brief Reminder

3.1.1 Classification of Practical Problems

Most practical problems can be crudely classified into three classes:

• We want to learn what is happening in the world; in particular, we want
to know the numerical values of different quantities (distances, masses,
charges, coordinates, etc.).

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 3, c© Springer-Verlag London Limited 2008

vladik@utep.edu

76 Vladik Kreinovich

• Based on these values, we would like to predict how the state of the world
will change over time.

• Finally, we would like to find out what changes we need to make in the
world so that these changes will lead to the desired results.

A real-life problem often involves solving subproblems of all three types.
This classification is closely related to the well-known classification of prac-

tically useful creative activity into engineering and science:

• The tasks of learning the current state of the world and predicting the
future state of the world are usually classified as science.

• The tasks of finding the appropriate change are usually classified as engi-
neering.

For example, measuring the flow of the Rio Grande river at different locations
and predicting how this river flow will change over time are problems of sci-
ence. Finding the best way to change this flow (e.g., by building a levee to
protect downtown El Paso) is a problem of engineering.

3.1.2 First Class of Practical Problems: Learning the State of the
World

Let us start with the first class of practical problems: the problem of learning
the state of the world. As we have mentioned, this means, in particular, that we
want to know the numerical values of different quantities y that characterize
this state.

Some quantities y we can simply directly measure. For example, when
we want to know the current state of a patient in a hospital, we can mea-
sure the patient’s body temperature, blood pressure, weight, and many other
important characteristics. In some situations, we do not even need to mea-
sure: We can simply ask an expert, and the expert will provide us with an
(approximate) value ỹ of the quantity y.

However, many other quantities of interest are difficult or even impor-
tant to measure or estimate directly. Examples of such quantities include the
amount of oil in a given well or the distance to a star. Since we cannot directly
measure the values of these quantities, the only way to learn some information
about them is to measure (or ask an expert to estimate) some other easier-to-
measure quantities x1, . . . , xn, and then to estimate y based on the measured
values x̃i of these auxiliary quantities xi.

For example, to estimate the amount of oil in a given well, we perform
seismic experiments: We set up small explosions at some locations and mea-
sure the resulting seismic waves at different distances from the location of the
explosion. To find the distance to a faraway star, we measure the direction to
the star from different locations on Earth (and/or in different seasons) and the
coordinates of (and the distances between) the locations of the corresponding
telescopes.

3 Relations Between Interval Computing and Soft Computing 77

To estimate the value of the desired quantity y, we must know the re-
lation between y and the easier-to-measure (or easier-to-estimate) quantities
x1, . . . , xn. Specifically, we want to use the estimates of xi to come up with
an estimate for y. Thus, the relation between y and xi must be given in the
form of an algorithm f(x1, . . . , xn) that transforms the values of xi into an
estimate for y. Once we know this algorithm f and the measured values x̃i of
the auxiliary quantities, we can estimate y as ỹ = f(x̃1, . . . , x̃n).

-

· · ·

-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

In different practical situations, we have algorithms f of different complex-
ity. For example, to find the distance to star, we can usually have an explicit
analytical formula coming from geometry. In this case, f is a simple formula.
On the other hand, to find the amount of oil, we must numerically solve a
complex partial differential equation. In this case, f is a complex iterative
algorithm for solving this equation.

In the case when the values xi are obtained by measurement, this two-stage
process does involve measurement. To distinguish it from direct measurements
(i.e., measurements which directly measure the values of the desired quantity),
the above two-stage process is called an indirect measurement.

3.1.3 Second Class of Practical Problems: Predicting the Future
State of the World

Once we know the values of the quantities y1, . . . , ym that characterize the
current state of the world, we can start predicting the future state of the
world (i.e., the future values of these quantities).

To be able to predict the future value z of each of these quantities, we
must know how exactly this value z depends on the current values y1, . . . , ym.
Specifically, we want to use the known estimates ỹi for yi to come up with
an estimate for z. Thus, the relation between z and yi must be given in the
form of an algorithm g(y1, . . . , ym) that transforms the values of yi into an
estimate for z. Once we know this algorithm g and the estimates ỹi for the
current values of the quantities, we can estimate z as z̃ = g(ỹ1, . . . , ỹn).

The corresponding algorithm g can sometime be very complicated and
time-consuming. This is, for example, how weather is predicted now: Weather
prediction requires so many computations that it can only be performed on
fast supercomputers.

78 Vladik Kreinovich

3.1.4 The General Notion of Data and Knowledge Processing

So far, we have analyzed two classes of practical problems:

• The problem of learning the current state of the world (i.e., the problem
of indirect measurement); and

• The problem of predicting the future state of the world.

From the practical viewpoint, these two problems are drastically different.
However, as we have seen, from the computational viewpoint, these two prob-
lems are very similar. In both problems, the following holds:

• We start with the estimates x̃1, . . . , x̃n for the quantities x1, . . . , xn.
• We apply the known algorithm f to these estimates, resulting in an esti-

mate ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.

When the inputs come from measurements (i.e., constitute data), the compu-
tational part of the corresponding procedure is called data processing. When
the inputs come from experts (i.e., constitute knowledge), the computational
part of the corresponding procedure is called knowledge processing.

3.1.5 Third Class of Practical Problems: How to Change the
World

Once we know the current state of the world and we know how to predict the
consequences of different decisions (designs, etc.), it is desirable to find the
decision (design, etc.) that guarantees the given results. Depending on what
we want from this design, we can subdivide all of the problems from this
class into two subclasses. In both subclasses, the design must satisfy some
constraints. Thus, we are interested in finding a design that satisfies all of
these constraints.

• In some practical situations, satisfaction of all of these constraints is all we
want. In general, there may be several possible designs that satisfy given
constraints. In the problems from the first subclass, we do not have any
preferences for one of these designs - any one of them will suffice. Such
problems are called the problems of constraint satisfaction.

• In other practical situations, we do have a clear preference between differ-
ent designs x. This preference is usually described in terms of an objective
function F (x) - a function for which more preferable designs x correspond
to larger values of F (x). In such a situation, among all of the designs that
satisfy given constraints, we would like to find a design x for which the
value F (x) of the given objective function is the largest. Such problems
are called optimization problems.

3 Relations Between Interval Computing and Soft Computing 79

3.2 Need for Interval Computations

3.2.1 Need to Take Uncertainty into Account

In the case of data processing, we start with measurement results x̃1, . . . , x̃n.
Measurements are never exact. There is a nonzero difference ∆xi

def= x̃i − xi

between the (approximate) measurement result x̃i and the (unknown) actual
value xi of the i-th quantity xi. This difference is called the measurement error.
The result ỹ = f(x̃1, . . . , x̃n) of applying the algorithm f to the measurement
results x̃i is, in general, different from the result y = f(x1, . . . , xn) of applying
this algorithm to the actual values xi. Thus, our estimate ỹ is, in general,
different from the actual value y of the desired quantity: ∆y

def= ỹ − y 6= 0.
In many practical applications, it is important to know not only the desired

estimate for the quantity y but also how accurate this estimate is. For example,
in geophysical applications, it is not enough to know that the amount of oil
in a given oil field is about 100 million tons: It is also important to know
how accurate this estimate is. If the amount is 100 ± 10, this means that the
estimates are good enough and we should start exploring this oil field. On the
other hand, if it is 100 ± 200, this means that it is quite possible that the
actual value of the desired quantity y is zero (i.e., that there is no oil at all).
In this case, it may be prudent to perform additional measurements before we
invest a lot of money into drilling oil wells.

The situation becomes even more critical in medical emergencies: It is not
enough to have an estimate of blood pressure or body temperature to make a
decision (e.g., whether to perform a surgery), it is important that even with
the measurement uncertainty, we are sure about the diagnosis - and if we are
not, maybe it is desirable to perform more accurate measurements.

It is therefore desirable to find out the uncertainty ∆y caused by the
uncertainties ∆xi in the inputs:

-

. . .

-

-

∆xn

∆x2

∆x1

-∆yf

Comment. We assumed that the relation f provides the exact relation between
the variables x1, . . . , xn, and the desired value y. If so, then in the ideal case
in which we plug in the actual (unknown) values of xi into the algorithm f ,
we get the exact value y = f(x1, . . . , xn) of y.

In many real-life situations, the relation f between xi and y is only approxi-
mately known. In this case, even if we know the exact values of xi, substituting

80 Vladik Kreinovich

these values into the approximate function f will not provide us with the exact
value of y. In such situations, there is even more uncertainty in y:

• First, there is an uncertainty in y caused by the the uncertainty in the
inputs.

• Second, there is a model uncertainty caused by the fact that the known
algorithm f only provides an approximate description of the dependence
between the inputs and the output.

A model uncertainty has to be estimated separately and added to the uncer-
tainty caused by the measurement errors.

3.2.2 From Probabilistic to Interval Uncertainty

To estimate the uncertainty ∆y caused by the measurement uncertainties ∆xi,
we need to have some information about these original uncertainties ∆xi. The
whole idea of uncertainty is that we do not know the exact value of xi (hence,
we do not know the exact value of ∆xi). In other words, there are several
possible values of ∆xi. Thus, the first thing we would like to know is the set
of possible values of ∆xi.

We may also know that some of these possible values are more frequent
than the others. In other words, we may also have some information about
the probabilities of different possible values ∆xi.

The manufacturers of a measuring device usually provide us with an upper
bound ∆i for the (absolute value of) possible measurement errors (i.e., with
the bound ∆i for which we are guaranteed that |∆xi| ≤ ∆i).

The need for such a bound comes from the very nature of a measurement
process. Indeed, if no such bound is provided, this means that the actual value
xi can be as different from the “measurement result” x̃i as possible. Such a
value x̃i is not a measurement; it is a wild guess.

Since the (absolute value of the) measurement error ∆xi = x̃i − xi is
bounded by the given bound ∆i, we can therefore guarantee that the actual
(unknown) value of the desired quantity belongs to the interval

xi
def= [x̃i −∆i, x̃i + ∆i].

For example, if the measured value of a quantity is x̃i = 1.0 and the upper
bound ∆i on the measurement error is 0.1, this means that the (unknown)
actual value of the measured quantity can be anywhere between 1− 0.1 = 0.9
and 1 + 0.1 = 1.1, i.e., that it can take any value from the interval [0.9, 1.1].

In many practical situations, we not only know the interval [−∆i,∆i] of
possible values of the measurement error; we also know the probability of
different values ∆xi within this interval [8].

In most practical applications, it is assumed that the corresponding mea-
surement errors are normally distributed with 0 mean and known standard

3 Relations Between Interval Computing and Soft Computing 81

deviation. Numerous engineering techniques are known (and widely used) for
processing this uncertainty; see, for example, [8].

In practice, we can determine the desired probabilities of different values
of ∆xi by comparing the following:

• The result x̃i of measuring a certain quantity with this instrument and
• The result x̃i st of measuring the same quantity by a standard (much more

accurate) measuring instrument.

Since the standard measuring instrument is much more accurate than the one
we use (i.e., |x̃i st − xi| � |x̃i − xi|), we can assume that x̃i st = xi, and,
thus, that the difference x̃i − x̃i st between these two measurement results is
practically equal to the measurement error ∆xi = x̃i − xi. Thus, the empir-
ical distribution of the difference x̃i − x̃i st is close to the desired probability
distribution for measurement error.

There are two cases, however, when this determination is not done:

• The first is the case of cutting-edge measurements (e.g., measurements in
fundamental science). When the Hubble telescope detects the light from
a distant galaxy, there is no “standard” (much more accurate) telescope
floating nearby that we can use to calibrate the Hubble: the Hubble tele-
scope is the best we have.

• The second case is the case of real industrial applications (such as mea-
surements on the shop floor). In this case, in principle, every sensor can be
thoroughly calibrated, but sensor calibration is so costly - usually costing
several orders of magnitude more than the sensor itself - that manufactur-
ers rarely do it (only if it is absolutely necessary).

In both cases, we have no information about the probabilities of ∆xi; the only
information we have is the upper bound on the measurement error.

In such cases, after performing a measurement and getting a measurement
result x̃i, the only information that we have about the actual value xi of the
measured quantity is that it belongs to the interval xi = [x̃i−∆i, x̃i +∆i]. In
other words, we do know not the actual value xi of the i-th quantity. Instead,
we know the interval [x̃i −∆i, x̃i + ∆i] that contains xi. In this situation, for
each i, we know the interval xi of possible values of xi, and we need to find
the range

y
def= {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}

of the given function f(x1, . . . , xn) over all possible tuples x = (x1, . . . , xn),
with xi ∈ xi. Since the function f(x1, . . . , xn) is usually continuous, this range
is also an interval (i.e., y = [y, y] for some y and y). So, to find this range, it
is sufficient to find the endpoints y and y of this interval.

Let us formulate the corresponding interval computations problem in pre-
cise terms. We are given the following:

• An integer n;
• n intervals x1 = [x1, x1], . . . , xn = [xn, xn];

82 Vladik Kreinovich

• An algorithm f(x1, . . . , xn) that transforms n real numbers into a real
number y = f(x1, . . . , xn).

We need to compute the endpoints y and y of the interval

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , [xn, xn]}.

-

. . .

-

-

xn

x2

x1

-yf

Interval computations are also important for the second class of problems:
predicting future values.

3.3 Knowledge Processing and Fuzzy Uncertainty

3.3.1 Need to Process Fuzzy Uncertainty

In many practical situations, we only have expert estimates for the inputs
xi. Sometimes, experts provide guaranteed bounds on the xi and even the
probabilities of different values within these bounds. However, such cases are
rare. Usually, the experts’ opinions about the uncertainty of their estimates are
described by (imprecise, “fuzzy”) words from natural language. For example,
an expert can say that the value xi of the i-th quantity is approximately equal
to 1.0, with an accuracy most probably of about 0.1. Based on such “fuzzy”
information, what can we say about y = f(x1, . . . , xn)?

The need to process such “fuzzy” information was first emphasized in the
early 1960s by Zadeh, who designed a special technique of fuzzy logic for such
processing; see, for example, [1, 7].

3.3.2 Processing Fuzzy Uncertainty: Main Idea

Intuitively, a value y is a reasonable value of the desired quantity if y =
f(x1, . . . , xn) for some reasonable values xi (i.e., if for some values x1, . . . , xn,
x1 is reasonable, x2 is reasonable, . . . , and y = f(x1 . . . , xn)). Thus, to de-
scribe to what extent different values of y are reasonable, we must be able to
do the following:

• Describe to what extent (to what degree) different values of xi are reason-
able.

• Combine these degrees into the desired degree of belief in reasonability of
y.

3 Relations Between Interval Computing and Soft Computing 83

3.3.3 Degrees of Belief

Let us first introduce the basic concept of degrees of belief. For example, we
would like to estimate to what extent the value xi = 0.89 is consistent with
the statement “the value xi of the i-th quantity is approximately equal to 1.0,
with an accuracy most probably about 0.1.”

In the absence of uncertainty, every statement is either true or false. In the
computer, “true” is usually represented as 1 and “false” as 0. It is therefore
reasonable to use numbers between 0 and 1 to represent levels of confidence
that are intermediate - intermediate between the absolute confidence that a
given statement is true and the absolute confidence that a given statement is
false.

How do we determine this degree of confidence? Some methods have been
described in the previous chapter. For example, we can ask several (N) experts
whether xi = 0.89 is consistent with the above statement, and if M of them
reply “yes”, take the ratio M/N as the desired degree of confidence. If we do
not have access to numerous experts, we can simply ask the only available
expert to describe his or her degree of confidence by marking a number on a
scale from 0 to N (e.g., on a scale from 0 to 5). If an expert marks his or her
degree as M , we take the ratio M/N as the desired degree of confidence.

3.3.4 Membership Functions

To formally describe the original expert’s statement S about xi, we need to
know, for every real number xi, the degree µS(xi) to which this real number
is consistent with this statement S.

By using the above procedure, we can determine this value µS(xi) for
every given real number xi. This procedure includes asking questions of the
expert. In practice, we can only ask finitely many questions. Thus, no matter
how many questions we ask, by using the above procedure we can only find
the values µS(xi) for finitely many real numbers xi. To estimate the values
µS(xi) for all other real numbers xi, we must therefore use interpolation and
extrapolation. As we have mentioned in the previous chapter, usually, a piece-
wise interpolation is used, but sometimes a more sophisticated procedure is
applied (e.g., a piecewise quadratic interpolation).

The function µS(xi) that is obtained by this approximation is called a
membership function. This function describes, for every real number xi, the
degree µS(xi) to which this real number is consistent with this statement S.

3.3.5 Need for “And” and “Or” Operations: t-Norms and
t-Conorms

As we have mentioned earlier, we are not directly interested in the degree to
which a given real number xi is consistent with the expert’s knowledge Si

about the i-th input. We are mainly interested in the degree to which x1 is

84 Vladik Kreinovich

consistent with the knowledge about the first input and x2 is consistent with
the knowledge about the second input and . . . and xn is consistent with the
knowledge about the n-th input.

In principle, we can determine the degree of belief in such a compos-
ite statement by asking an expert, for each possible combination of values
x1, x2, . . . , xn, what is the degree to which this combination is consistent with
all the available expert knowledge. However, as we have mentioned earlier,
even for a single input, we cannot realistically elicit degrees of confidence
about too many values. If we consider N possible values of each input, then
we would need to elicit the expert’s degree of confidence about Nn � N
possible combinations - which is even less realistic.

Since we cannot directly elicit the expert’s degree of confidence in all
composite statements, a natural idea is to estimate the degree of confidence
in the composite statement based on the degrees of confidence in individual
statements, such as “xi is consistent with the expert’s knowledge Si about
the i-th input.”

How can we come up with such an estimate? Let us reformulate this esti-
mation problem:

• We know the expert’s degree of confidence in statements A1, A2, . . . , An.
• We want to estimate the expert’s degree of confidence in a composite

statement A1 &A2 & . . . &An (i.e., “A1 and A2 and . . . and An”).

Since, for example, A1 &A2 &A3 can be represented as (A1 &A2)& A3, it
is sufficient to solve this estimation problem for the case of two statements.
Once we have a solution for this particular case, we will then be able to solve
the general problem as well:

• First, we apply the two-statement solution to the degrees of certainty in A1

and A2 and get an estimate for the expert’s degree of certainty in A1 &A2.
• Then we apply the same solution to the degrees of certainty in A1 &A2 and

A3 and get an estimate for the expert’s degree of certainty in A1 &A2 &A3.
• After that, we apply the same solution to the degrees of certainty in

A1 &A2 &A3 and A4 and get an estimate for the expert’s degree of cer-
tainty in A1 &A2 &A3 &A4.

• Etc.

Eventually, we will get the degree of confidence in the desired composite state-
ment A1 &A2 & . . . &An.

Thus, we need a procedure that would transform the degree of belief d1

in a statement A1 and the degree of belief d2 in a statement A2 into a (rea-
sonable) estimate for a degree of belief in a composite statement A1 &A2. Let
us denote the estimate corresponding to given values d1 and d2 by f&(d1, d2).
The procedure f& that maps degrees of belief d1 and d2 in statements A1

and A2 into a degree of belief d = f&(d1, d2) in A1 &A2 is called an “and”
operation, or, for historical reasons, a t-norm.

3 Relations Between Interval Computing and Soft Computing 85

Similarly, to estimate the degree of belief in a composite statement A1∨A2

(“A1 or A2”), we need a procedure f∨ that maps degrees of belief d1 and d2 in
statements A1 and A2 into a degree of belief d = f∨(d1, d2) in A1 ∨A2. Such
a procedure is called an “or”-operation . Since, in logic, “or” is a kind of dual
to “and”, an “or” operation can be viewed as a dual to an “and” operation
(t-norm). Because of this duality, an “or” operation is also called a t-conorm.

3.3.6 Properties of “And” and “Or” Operations

From the intended meaning of the “and” and “or” operations, we can deduce
reasonable properties of these operations. For example, intuitively, “A1 and
A2” means the same as “A2 and A1.” Thus, it is reasonable to require that
our estimate f&(d1, d2) for the degree of confidence in “A1 and A2” should be
the same our estimate f&(d2, d1) for the degree of confidence in “A2 and A1.”
In other words, we must have f&(d1, d2) = f&(d2, d1) for all possible values
of d1 and d2. In mathematical terms, this means that the function f& must
be commutative.

Similarly, “(A1 and A2) and A3” means the same as “A1 and (A2 and
A3)” because both mean the same as “A1 and A2 and A3.” For each “and”
operation f&, the expression “(A1 and A2) and A3” means that we

• first estimate the degree of belief in “A1 and A2” as f&(d1, d2), and
• then estimate the degree of belief in “(A1 and A2) and A3” as

f&(f&(d1, d2), d3).

Similarly, the expression “A1 and (A2 and A3)” means that we

• first estimate the degree of belief in “A2 and A3” as f&(d2, d3) and
• then estimate the degree of belief in “A1 and (A2 and A3)” as

f&(d1, f&(d2, d3)).

Since the expressions are equivalent, it is reasonable to require that these
estimates coincide (i.e., that f&(f&(d1, d2), d3) = f&(d1, f&(d2, d3)) for all
possible values of d1, d2, and d3). In mathematical terms, this means that the
function f& must be associative.

There are several other reasonable properties of “and” operations. For
example, since “A1 and A2” implies A1, our degree of belief in the composite
statement “A1 and A2” cannot exceed our degree of belief in A1. Thus, it
is reasonable to require that the estimate f&(d1, d2) for this degree of belief
should also not exceed our degree of belief d1 in the statement A1. In other
words, we should have f&(d1, d2) ≤ d1 for all possible values of d1 and d2.

If A1 is absolutely true (i.e., d1 = 1), then, intuitively, the composite
statement “A1 and A2” has exactly the same truth value as A2. Thus, it is
reasonable to require that f&(1, d2) = d2 for all possible values of d2.

86 Vladik Kreinovich

On the other hand, if A1 is absolutely false (i.e., d1 = 0), then the com-
posite statement “A1 and A2” should also be absolutely false, no matter how
much we may believe in A2. Thus, it is reasonable to require that f&(0, d2) = 0
for all possible values of d2.

Finally, if, due to new evidence, our degree of belief in one of the statements
A1 and A2 increases, the resulting degree of belief in a composite statement
“A1 and A2” will either increase or stay the same - but it cannot decrease.
Thus, it is it is reasonable to require that the operation f& be monotonic in
the sense that if d1 ≤ d′1 and d2 ≤ d′2, then f&(d1, d2) ≤ f&(d′1, d

′
2).

All of these properties are indeed required of an “and” operation (t-norm).
Similarly, it is reasonable to require that an “or” operation (t-conorm) f∨
should be commutative, associative, monotonic, and satisfy the conditions
that d1 ≤ f∨(d1, d2), f∨(1, d2) = 1 and f∨(0, d2) = d2 for all possible values
of d1 and d2.

3.3.7 Simplest “And” and “Or” Operations: Derivation

There exist many different “and” and “or” operations that satisfy the above
properties; see, for example, [1, 4, 5, 7]. In some applications such as fuzzy
control (see Chapter 2), it is crucial to select appropriate operations because
we can use the corresponding additional degrees of freedom to tune the re-
sulting control and make it an even better fit for the corresponding objective
function.

However, in knowledge processing, when we are very uncertain about the
inputs, it is probably more reasonable to select the simplest “and” and “or”
operations that are consistent with the expert knowledge. To select such op-
erations, it makes sense to consider yet another property of “and” and “or”:
that for every statement A, “A and A” means the same as simply A. Thus,
it is reasonable to require that for every statement A with a degree of confi-
dence d, our estimate f&(d, d) of the expert’s degree of confidence in “A and
A” should be the same as the original degree of confidence d in the original
statement A. Thus, it is reasonable to require that f&(d, d) = d for all possible
values of d. In mathematical terms, this means that the function f& must be
idempotent.

Similarly, since “A or A” means the same as simply A, it is reasonable to
require that f∨(d, d) = d for all possible values of d (i.e., that the function f&

must also be idempotent).
It turns out that this additional requirement leads to a unique “and”

operation and a unique “or” operation. Let us first show that the only idem-
potent “and” operation is f&(d1, d2) = min(d1, d2). Without loss of gener-
ality, let us assume that d1 ≤ d2. In this case, the desired equality takes
the form f&(d1, d2) = d1. Since the operation f& is idempotent, we have
f&(d1, d1) = d1. Due to d1 ≤ d2, monotonicity implies that f&(d1, d1) ≤
f&(d1, d2), hence d1 ≤ f&(d1, d2). On the other hand, for an “and” operation,

3 Relations Between Interval Computing and Soft Computing 87

we always have f&(d1, d2) ≤ d1. So, we can conclude that f&(d1, d2) = d1

(i.e., indeed, f&(d1, d2) = min(d1, d2)).
Let us now prove that the only idempotent “or” operation is f∨(d1, d2) =

max(d1, d2). Without loss of generality, let us again assume that d1 ≤ d2.
In this case, the desired equality takes the form f∨(d1, d2) = d2. Since the
operation f∨ is idempotent, we have f∨(d2, d2) = d2. Due to d1 ≤ d2, mono-
tonicity implies that f∨(d1, d2) ≤ f∨(d2, d2), hence f∨(d1, d2) ≤ d2. On the
other hand, for an “or” operation, we always have d2 ≤ f∨(d1, d2). Thus, we
conclude that f∨(d1, d2) = d2 (i.e., indeed, f∨(d1, d2) = max(d1, d2)).

The operations f&(d1, d2) = min(d1, d2) and f∨(d1, d2) = max(d1, d2) were
actually the first designed by Zadeh; they are still actively used in various
applications of fuzzy techniques; see, for example, [1, 7].

3.3.8 Zadeh’s Extension Principle

Let us apply the above simple operations to knowledge processing, or, to be
more precise, to processing fuzzy uncertainty. In this situation:

• We know an algorithm y = f(x1, . . . , xn) that relates the value of the
desired difficult-to-estimate quantity y with the values of easier-to-estimate
auxiliary quantities x1, . . . , xn.

• We also have expert knowledge about each of the quantities xi. For each
i, this knowledge is described in terms of the corresponding membership
function µi(xi). For each i and for each value xi, the value µi(xi) is the
degree of confidence that this value is indeed a possible value of the i-th
quantity.

Based on this information, we want to find the membership function µ(y) that
describes, for each real number y, the degree of confidence that this number
is a possible value of the desired quantity.

As we have mentioned earlier, y is a possible value of the desired quantity if
for some values x1, . . . , xn, x1 is a possible value of the first input quantity, and
x2 is a possible value of the second input quantity, . . . , and y = f(x1 . . . , xn).
We know that the degree of confidence that x1 is a possible value of the first
input quantity is equal to µ1(x1), that the degree of confidence that x2 is
a possible value of the second input quantity is equal to µ2(x2), and so on.
The degree of confidence d(y, x1, . . . , xn) in an equality y = f(x1 . . . , xn) is,
of course, equal to 1 if this equality holds and to 0 if this equality does not
hold.

We have already agreed to represent “and” as min. Thus, for each combi-
nation of values x1, . . . , xn, the degree of confidence in a composite statement
“x1 is a possible value of the first input quantity, and x2 is a possible value of
the second input quantity, . . . , and y = f(x1 . . . , xn)” is equal to

min(µ1(x1), µ2(x2), . . . , d(y, x1, . . . , xn)).

88 Vladik Kreinovich

We can simplify this expression if we consider two possible cases: when the
equality y = f(x1 . . . , xn) holds and when this equality does not hold.

When the equality y = f(x1 . . . , xn) holds, we get d(y, x1, . . . , xn) = 1,
and, thus, the above degree of confidence is simply equal to

min(µ1(x1), µ2(x2), . . . , µn(xn)).

When the equality y = f(x1 . . . , xn) does not hold, we get d(y, x1, . . . , xn)
= 0, and, thus, the above degree of confidence is simply equal to 0.

We want to combine these degrees of belief into a single degree of con-
fidence that “for some values x1, . . . , xn, x1 is a possible value of the first
input quantity, and x2 is a possible value of the first input quantity, . . . , and
y = f(x1 . . . , xn).” The words “for some values x1, . . . , xn” means that the
following composite property holds either for one combination of real numbers
x1, . . . , xn, or for another combination - until we exhaust all (infinitely many)
such combinations. We have already agreed to represent “or” as max. Thus,
the desired degree of confidence µ(y) is equal to the maximum of the degrees
corresponding to different combinations x1, . . . , xn. Since we have infinitely
many possible combinations, the maximum is not necessarily attained, so we
should, in general, consider supremum instead of maximum:

µ(y) = supmin(µ1(x1), µ2(x2), . . . , d(y, x1, . . . , xn)),

where the supremum is taken over all possible combinations.
Since we know that the maximized degree is nonzero only when y =

f(x1 . . . , xn), it is sufficient to only take the supremum over such combina-
tions. For such combinations, we can omit the term d(y, x1, . . . , xn) in the
maximized expression, so we arrive at the following formula:

µ(y) = sup{min(µ1(x1), µ2(x2), . . . , µn(xn)) : y = f(x1, . . . , xn)}.

This formula describes a reasonable way to extend an arbitrary data process-
ing algorithm f(x1, . . . , xn) from real-valued inputs to a more general case
of fuzzy inputs. It was first proposed by Zadeh and is thus called Zadeh’s
extension principle.

This is the main formula that describes knowledge processing under fuzzy
uncertainty. In the following section, we will show that from the computational
viewpoint, the application of this formula can be reduced to interval computa-
tions - and indeed, this is how knowledge processing under fuzzy uncertainty
is usually done, by using this reduction; see, for example, [1, 3, 7].

3 Relations Between Interval Computing and Soft Computing 89

3.4 Main Relation Between Interval Computing and Soft
Computing: Fuzzy-Related Knowledge Processing Can
Be Reduced to Interval Computations

3.4.1 An Alternative Set Representation of a Membership
Function: alpha-Cuts

To describe the desired relation between fuzzy and interval data processing,
we must first reformulate fuzzy techniques in an interval-related form.

In some situations, an expert knows exactly which values of xi are possible
and which are not. In this situation, the expert’s knowledge can be naturally
represented by describing the set of all possible values.

In general, the expert’s knowledge is fuzzy:

• We may still have some values about which the expert 100% believes that
they are possible.

• we may still have some values about which the expert 100% believes that
they are impossible.

• However, in general, the expert is not 100% confident about which values
of xi are possible and which are not.

For example, a geophysicist may be confident that the density xi of some
mineral can take on values ranging from 3.4 to 3.7 g/cm3 and she may know
that values smaller than 3.0 or larger than 4.0 are absolutely impossible, but
she is not sure whether values from 3.0 to 3.4 or from 3.7 to 4.0 are indeed
realistically possible.

As we have mentioned, the ultimate purpose of the measurements and
estimates is to make decisions. In the geophysical example, we have measured
the density at a certain depth, and we need to decide the following:

• Whether it is possible that we have the desired mineral - in which case we
should undertake more measurements.

• Whether it is not possible that we have the desired mineral - in which
case we should not waste our resources on this region and move to more
promising regions.

In practice, decisions are made under uncertainty. If we only have a fuzzy
expert description of possible values - in terms of the membership function
µS(xi) - which values xi should we then classify as possible ones and which
as impossible?

Under uncertainty, a reasonable idea is to select a threshold α ∈ (0, 1]. In
this case,

• all the values xi for which the expert’s degree of confidence is strong enough
(i.e., for which µS(xi) ≥ α) are classified as possible;

• similarly, all the values xi for which the expert’s degree of confidence is not
sufficiently strong (i.e., for which µS(xi) < α) are classified as impossible.

90 Vladik Kreinovich

The resulting set of possible elements

xi(α) def= {xi : µS(xi) ≥ α}

is called the α-cut of the membership function µS(xi).
The choice of a threshold α depends on the practical problem. For example,

if we are looking for a potentially very valuable mineral deposit, then it makes
sense to continue prospecting even when our degree of confidence is not very
high. In this case, it makes sense to select a reasonably small threshold α.
On the other hand, if the potential benefit is not high and our resources are
limited, it makes sense to limit our search to highly promising regions (i.e., to
select a reasonably high threshold α).

To adequately describe the expert knowledge irrespective of an application,
we therefore need to know the α-cuts corresponding to different thresholds α.
Each α-cut xi(α) describes the set of values that are possible with degree of
confidence at least α.

By definition, α-cuts corresponding to different α are nested: When α ≤ α′,
then µS(xi) ≥ α′ implies µS(xi) ≥ α and, thus,

xi(α′) = {xi : µS(xi) ≥ α′} ⊆ xi(α) = {xi : µS(xi) ≥ α}.

Comment. It is worth mentioning that if we know the α-cuts

xi(α) = {xi : µS(xi) ≥ α}

corresponding to all possible values α ∈ (0, 1], then we can uniquely recon-
struct the corresponding membership function µS(xi). The possibility for such
a reconstruction follows from the fact that every real number r is equal to the
largest largest value α for which r ≥ α. In particular, for every xi, the value
µS(xi) is equal to the largest value α for which µS(xi) ≥ α. By definition
of the α-cut, the inequality µS(xi) ≥ α is equivalent to xi ∈ xi(α). Thus,
for every xi, the value µS(xi) can be reconstructed as the largest value α for
which xi ∈ xi(α).

Thus, we can alternatively view a membership function as a nested family
of α-cuts; see, for example, [3].

3.4.2 Fuzzy Numbers and Intervals

In most practical situations, the membership function starts with 0, contin-
uously increases until a certain value, and then continuously decreases to 0.
Such membership function describe usual expert’s expressions such as “small,”
“medium,” “reasonably high,” “approximately equal to a with an error about
σ,” and so on. Such examples were given in the previous chapter. Since mem-
bership functions of this type are actively used in expert estimates of number-
valued quantities, they are usually called fuzzy numbers.

3 Relations Between Interval Computing and Soft Computing 91

For a fuzzy number µi(xi), every α-cut xi(α) is an interval. Thus, a fuzzy
number can be viewed as a nested family of intervals xi(α) corresponding to
different degrees of confidence.

3.4.3 Simplest “And” and “Or” Operations: Reformulation in
Terms of Sets and alpha-Cuts

The main formulas for fuzzy computations (i.e., for processing fuzzy data)
were derived by using the simplest “and” and “or” operations f&(d1, d2) =
min(d1, d2) and f∨(d1, d2) = max(d1, d2), respectively. Thus, before we de-
scribe how fuzzy computations can be reduced to interval computations, let
us first reformulate these “and” and “or”operations in terms of α-cuts.

Specifically, let us assume that we have two properties A and B that are
described by the membership functions µA(x) and µB(x) and, correspond-
ingly, by the α-cuts xA(α) = {x : µA(x) ≥ α} and xB(α) = {x : µB(x) ≥ α}.
If we use the simplest “and” operation f&(d1, d2) = min(d1, d2), then the com-
posite property A &B (“A and B”) is described by the membership function
µA & B(x) = min(µA(x), µB(x)). What are the α-cuts

xA & B(α) = {x : µA & B(x) ≥ α}

corresponding to this membership function?
The minimum of two real numbers is greater than or equal to α if and

only if both of these numbers are greater than or equal to α. Thus, the con-
dition µA & B(x) = min(µA(x), µB(x)) ≥ α is equivalent to “µA(x) ≥ α and
µB(x) ≥ α.” Hence, the set xA & B(α) of all the values x for which the con-
dition µA & B(x) = min(µA(x), µB(x)) ≥ α is satisfied can be found simply as
the intersection of the set of all x for which µA(x) ≥ α and the set of all x for
which µB(x) ≥ α. In other words, for every α, we have

xA & B(α) = xA(α) ∩ xB(α).

Therefore, to perform the simplest “and” operation f&(d1, d2) = min(d1, d2),
we simply take the intersection of the corresponding α-cuts. This is a very
natural operation, since, for exactly defined sets and properties, the set of all
the elements that satisfy the property A &B is equal to the intersection of
the set of all elements that satisfy property A and the set of all elements that
satisfy property B.

Similarly, for the simplest “or” operation f∨(d1, d2) = max(d1, d2), the
composite property A∨B (“A or B”) is described by the membership function
µA∨B(x) = max(µA(x), µB(x)). To find the α-cuts

xA∨B(α) = {x : µA∨B(x) ≥ α}

corresponding to this membership function, we can use the fact that the
maximum of two real numbers is greater than or equal to α if and only

92 Vladik Kreinovich

if one of these numbers is greater than or equal to α. Thus, the condi-
tion µA∨B(x) = max(µA(x), µB(x)) ≥ α is equivalent to “µA(x) ≥ α or
µB(x) ≥ α.” Hence, the set xA∨B(α) of all the values x for which the condi-
tion µA∨B(x) = max(µA(x), µB(x)) ≥ α is satisfied can be found simply as
the union of the set of all x for which µA(x) ≥ α and the set of all x for which
µB(x) ≥ α. In other words, for every α, we have

xA∨B(α) = xA(α) ∪ xB(α).

Therefore, to perform the simplest “or” operation f∨(d1, d2) = max(d1, d2),
we simply take the union of the corresponding α-cuts. This is also a very
natural operation, since, for exactly defined sets and properties, the set of all
the elements that satisfy the property A ∨ B is equal to the union of the set
of all elements that satisfy property A and the set of all elements that satisfy
property B.

3.4.4 Fuzzy Computations Can Be Reduced to Interval
Computations: Derivation

The main problem of fuzzy computation can be described as follows:

• We know an algorithm y = f(x1, . . . , xn) that relates the value of the
desired difficult-to-estimate quantity y with the values of easier-to-estimate
auxiliary quantities x1, . . . , xn.

• We also know, for every i from 1 to n, a membership function µi(xi) that
describes the expert knowledge about the i-th input quantity xi.

Our objective is to compute the function

µ(y) = sup{min(µ1(x1), µ2(x2), . . . , µn(xn)) : y = f(x1, . . . , xn)}.

Let us now describe this relation in terms of α-cuts. This description will
constitute the main relation between fuzzy and interval computing. This re-
lation was first discovered and proved in [2]. To describe this result in precise
terms, let us first make some mathematics-related remarks.

The function y = f(x1, . . . , xn) describes the relation between physical
quantities. In physics, such a relation is usually continuous. Even when we have
seemingly discontinuous transitions (e.g., in phase transitions when, say, the
density of water changes into a much smaller density of steam), it is not really
a discontinuous transition; it is simply a very fast but still continuous one. In
view of this observation, we will assume that the function y = f(x1, . . . , xn)
is continuous.

We will also assume the membership functions µi(xi) are continuous. If
we had exact knowledge, then continuity would make no sense, since then the
corresponding degree of confidence would abruptly go from 1 for possible val-
ues to 0 for impossible ones, without ever attaining any intermediate degrees.
However, for fuzzy knowledge, continuity makes perfect sense. If there is some

3 Relations Between Interval Computing and Soft Computing 93

degree of confidence that a value xi is possible, then it makes sense to assume
that values close to xi are possible too - with a similar degree of belief. In
practice, as we mentioned earlier in this chapter and in the previous chapter,
membership functions are indeed usually continuous.

It is important to mention that for continuous membership functions
µi(xi), α-cuts {xi : µi(xi) ≥ α} are closed sets (i.e., sets that contain all
of their limit points).

Finally, we require that for every i and for every α > 0, the α-cut is a
compact set. For real numbers, since we have already assumed that the α-
cuts {xi : µi(xi) ≥ α} are closed sets, it is sufficient to require that these sets
are bounded. This is true, for example, if we assume that all of the membership
functions correspond to fuzzy numbers; in this case, all α-cuts are intervals.

Suppose that we know the α-cuts xi(α) corresponding to the inputs and
we want to find the α-cuts y(α) corresponding to the output. By definition
of an α-cut, y ∈ y(α) means that µ(y) ≥ α, that is, that

sup{min(µ1(x1), µ2(x2), . . . , µn(xn)) : y = f(x1, . . . , xn)} ≥ α.

By definition of the supremum, this means that for every integer k > 2/α,
there exists a tuple (x(k)

1 , x
(k)
2 , . . . , x

(k)
n) for which y = f(x(k)

1 , . . . , x
(k)
n) and

min(µ1(x
(k)
1), µ2(x

(k)
2), . . .) ≥ α− 1/k.

The minimum of several numbers is≥ α−1/k if and only if all of these numbers
are ≥ α − 1/k (i.e., µi(x

(k)
i) ≥ α − 1/k for all i). Since k > 2/α, we have

1/k < α/2 and α−1/k > α/2. Thus, for each i and all k, the value x
(k)
i belongs

to the compact (α/2)-cut xi(α/2). Since the tuples (x(k)
1 , x

(k)
2 , · · · , x(k)

n) belong
to the compact set

x1(α/2)× x2(α/2)× · · · × xn(α/2),

the sequence of these tuples has a convergent subsequence converging to some
tuple (x1, x2, . . . , xn). Since both f and µi are continuous, for this limit tuple
we get y = f(x1, . . . , xn) and µi(xi) ≥ α. In other words, every element
y ∈ y(α) can be represented as y = f(x1, . . . , xn) for some values xi ∈ xi(α).

Conversely, if xi ∈ xi(α) and, y = f(x1, . . . , xn), then µi(xi) ≥ α and
therefore, min(µ1(x1), µ2(x2), . . . , µn(xn)) ≥ α and hence

sup{min(µ1(x1), µ2(x2), . . . , µn(xn)) : y = f(x1, . . . , xn)} ≥ α

(i.e., µ(y) ≥ α and y ∈ y(α)).
Thus, the desired α-cut y(α) consists of exactly values y = f(x1, . . . , xn)

for xi ∈ xi(α):

y(α) = {f(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.

94 Vladik Kreinovich

This is exactly the range that we defined when we described interval compu-
tations, so we can rewrite this formula as

y(α) = f(x1(α), . . . ,xn(α)).

In particular, for fuzzy numbers, when all α-cuts xi(α) are intervals, comput-
ing each α-cut y(α) is exactly the problem of interval computations.

3.4.5 Fuzzy Computations Can Be Reduced to Interval
Computations: Conclusion

If the inputs µi(xi) are fuzzy numbers and the function y = f(x1, . . . , xn)
is continuous, then for each α, the α-cut y(α) of y is equal to the range of
possible values of f(x1, . . . , xn) as xi ranges over xi(α) for all i:

y(α) = f(x1(α), . . . ,xn(α)).

Thus, from the computational point of view, the problem of processing data
under fuzzy uncertainty can be reduced to several problems of data processing
under interval uncertainty - as many problems as there are α-levels. As we have
mentioned, this is not just a theoretical observation: This is exactly how fuzzy
data processing is usually performed and this is how interval computations
techniques are explained in fuzzy textbooks.

3.5 Auxiliary Relation Between Interval Computing and
Soft Computing: Interval-Valued Fuzzy Techniques

3.5.1 Intervals Are Necessary to Describe Degrees of Belief

Earlier, we described an idealized situation in which we can describe degrees
of belief by exact real numbers. In practice, the situation is more compli-
cated, because experts cannot describe their degrees of belief precisely; see,
for example, [6] and references therein.

Indeed, let us start by reviewing the above-described methods of eliciting
degrees of belief. If an expert describes his or her degree of belief by selecting,
for example, 8 on a scale from 0 to 10, this does not mean that his or her
degree of belief is exactly 0.8: if instead, we ask him or her to select on a
scale from 0 to 9, then whatever he or she chooses, after dividing it by 9, we
will never get 0.8. If an expert chooses a value 8 on a 0 to 10 scale, then the
only thing that we know about the expert’s degree of belief is that it is closer
to 8 than to 7 or to 9 (i.e., that this degree of belief belongs to the interval
[0.75, 0.85]).

Another possible source of interval uncertainty is when we have several
experts and their estimates differ. If, for example, two equally good experts

3 Relations Between Interval Computing and Soft Computing 95

point to 7 and 8, then, if we are cautious, we would rather describe the result-
ing degree of belief as the interval [0.7, 0.8] (or, in view of the above remark,
as the interval [0.65, 0.85]).

If we determine the degree of belief by polling, then the same argument
shows that the resulting numbers are not precise; for example, if 8 out of
10 experts voted for A, then we cannot say that the actual degree of belief
is exactly 0.8, because if we repeated this procedure with 9 experts, we will
never get exactly 0.8. In this case, there are two other sources of uncertainty:
First, picking experts is sort of a random procedure, so the result of voting
is a statistical estimate that is not precise (just like a statistical frequency
estimate of probability). A better description will be to give an interval of
possible values of d(A).

The polling method of estimating the degree of belief is based on the
assumption that an expert can always tell whether he believes in a given
statement S or not. Then we take the ratio d(S) = N(S)/N of the number
N(S) of experts who believe in S to the total number N of experts as the
desired estimate. For ¬S, we thus have N(¬S) = N − N(S), so d(¬S) =
N(¬S)/N = 1 − d(S). In reality, an expert is often unsure about S. In this
case, instead of dividing the experts into two categories: -those who believe
in S and those who do not- we must divide them into three categories: those
who believe that S is true (we will denote their number by N(S)); those who
believe that S is false (we will denote their number by N(¬S)); and those who
do not have the definite opinion about S -there are N − N(S) − N(¬S) of
them. In this situation, one number is not sufficient to describe the experts’
degree of belief in S; we need at least two. There are two ways to describe it:
We can describe the degree of belief in S as d(S) = N(S)/N and the degree
of belief in ¬S as d(¬S) = N(¬S)/N . These two numbers must satisfy the
condition d(S) + d(¬S) ≤ 1. This description is known as intuitionistic fuzzy
logic. (The reason for the word “intuitionistic” is that this logic is close to the
original intuitionistic idea that the law of excluded middle is not always true.)

Alternatively, we can describe the degree of belief d(S) in S and the degree
of plausibility of S estimating as the fraction of experts who do not consider
S impossible, i.e., as pl(S) = 1− d(¬S), i.e., as an interval [d(S), pl(S)]. This
representation corresponds to the Dempster-Shafer formalism (see Chapter 2).

So, to describe degrees of belief adequately, we must use intervals instead
of real numbers.

3.5.2 Interval Computations for Processing Interval-Valued
Degrees of Belief: General Idea

For an expert system with interval-valued degrees of belief, the following prob-
lem arises: Suppose that we have an expert system whose knowledge base
consists of statements S1, . . . , SN and we have an algorithm f(Q, d1, . . . , dN)
(called inference engine) that for any given query Q, transforms the degrees of

96 Vladik Kreinovich

belief d(S1), . . . , d(SN) in the statements from the knowledge base into a de-
gree of belief d(Q) = f(Q, d(S1), . . . , d(SN)) in Q (e. g., if Q = S1&S2, then
f(d1, . . . , dN) = f&(d1, d2)). Suppose now that we know only the intervals
d(S1), . . . , d(SN) that contain the desired degree of belief. Then the degree
of belief in Q can take any value from the set

f(Q, d(S1), . . . ,d(SN)) = {f(Q, d1, . . . , dN) | di ∈ d(Si)}.

Computing such an interval is a typical problem of interval computations.
In particular, since the functions f& and f∨ are increasing in both argu-

ments, we have
f&([x, x], [y, y]) = [f&(x, y), f&(x, y)]

and
f∨([x, x], [y, y]) = [f∨(x, y), f∨(x, y)].

For example,
min([x, x], [y, y]) = [min(x, y),min(x, y)]

and
max([x, x], [y, y]) = [max(x, y),max(x, y)].

In the following chapters, we will give examples of practical applications
of interval-valued fuzzy values.

3.6 Conclusion

In this chapter, we have explained intrinsic and useful relations between inter-
val computing and soft computing - specifically, fuzzy data processing. The
main relation is that a fuzzy set (membership function) can be viewed as
a nested family of intervals - its α-cuts corresponding to different levels of
uncertainty α. From the computational viewpoint, fuzzy data processing can
be (and usually is) reduced to level-by-level interval computations with the
corresponding α-cuts.

Another relation comes from the fact that it is usually difficult to describe
experts’ degrees of certainty by exact real numbers. A more adequate de-
scription of expert’s uncertainty is by an interval. Processing interval-valued
degrees of uncertainty also requires interval computations.

References

1. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice-Hall, Englewood
Cliffs, NJ (1995)

2. Nguyen, H.T.: A note on the extension principle for fuzzy sets. Journal Math.
Anal. and Appl. 64, 369–380 (1978)

3 Relations Between Interval Computing and Soft Computing 97

3. Nguyen, H.T., Kreinovich, V.: Nested intervals and sets: concepts, relations to
fuzzy sets, and applications. In: R.B. Kearfott, V. Kreinovich (eds.) Applications
of Interval Computations, pp. 245–290. Kluwer Academic Publishers Group,
Norwell, MA (1996)

4. Nguyen, H.T., Kreinovich, V.: Applications of Continuous Mathematics to Com-
puter Science. Kluwer Academic Publishers Group, Norwell, MA (1997)

5. Nguyen, H.T., Kreinovich, V.: Methodology of fuzzy control: an introduction.
In: H.T. Nguyen, M. Sugeno (eds.) Fuzzy Systems: Modeling and Control, pp.
19-62. Kluwer Academic Publishers Group, Norwell, MA (1998)

6. Nguyen, H.T., Kreinovich, V., Zuo, Q.: Interval-valued degrees of belief: Ap-
plications of interval computations to expert systems and intelligent control.
International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems
5, 317–358 (1997)

7. Nguyen, H.T., Walker, E.A.: First Course in Fuzzy Logic. CRC Press, Boca
Raton, FL (2006)

8. Rabinovich, S.: Measurement Errors and Uncertainties: Theory and Practice.
American Institute of Physics, New York (2005)

4

Interval Matrices in Knowledge Discovery

Chenyi Hu1 and R. Baker Kearfott2

1 Department of Computer Science, University of Central Arkansas, 201 Donaghey
Avenue, Conway, AR 72035-0001, USA. chu@uca.edu

2 Department of Mathematics, University of Louisiana at Lafayette, Box 4-1010,
Lafayette, LA 70504-1010, USA. rbk@louisiana.edu

In this chapter, we study the concepts of interval matrices and related strate-
gies for knowledge discovery. Section 4.1 introduces interval matrices. Sec-
tion 4.2 discusses representations of an interval matrix. Section 4.3 investigates
approximate solutions for interval linear systems of equations. Section 4.4 ex-
amines interval versions of singular value decompositions (SVD) and principal
component analysis (PCA). Section 4.5 presents a case study, and we draw
conclusions in Section 4.6.

4.1 Interval Matrices

Modern technologies collect massive datasets from observations, experiments,
and scientific simulation. To obtain knowledge and information, we need to
process the collected data that are mostly stored in digital form as points.
Numerous computer software packages have been developed to assist. For ex-
ample, electronic spreadsheets store and process datasets as tables (matrices).
In contrast to traditional point presentation in data arrangement and process-
ing, we investigate interval matrix representation of datasets in this chapter.

4.1.1 Why and What Is an Interval Matrix?

In real-world applications, people often care more about qualitative properties
than insignificant quantitative differences. Reflected in daily language, most
words are qualitative rather than quantitative. Quantitative measurements
describe property characteristics more precisely; however, in many cases, rel-
atively small quantitative differences are not qualitatively significant. People
have already noticed that precisely matching point data in knowledge pro-
cessing can be either unnecessary or even misleading. Therefore, organizing
data qualitatively as intervals is a reasonable alternative. For example, normal
ranges of test results on human physiology are commonly described as ranges

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 4, c© Springer-Verlag London Limited 2008

chu@uca.edu
rbk@louisiana.edu

100 Chenyi Hu and R. Baker Kearfott

(intervals) rather than specific point values. By grouping point data into in-
tervals, one can omit insignificant quantitative differences and focus more on
qualitative study.

On the other hand, the real world is dynamic and full of uncertainties.
Data collected, especially for nonintegral attributes, inevitably contain mea-
surement errors and random noise. Using intervals to represent data, one au-
tomatically takes variability and uncertainty into consideration. Storing data
attributes as intervals, we obtain an interval-valued table (matrix).

Definition 1. An interval matrix A = {aij}m×n is an m × n matrix whose
entries, aij, are intervals.

For example, A =
(

[0, 1] [-2, 0] [-4, -2]
[-8, -5] [0, 0] [20, 25]

)
is a 2× 3 interval matrix.

Interval matrices have different features from that of traditional point
matrices. Therefore, they can be used to model many discrete and even con-
tinuous applications in knowledge processing. The following are few of them
that will studied in the rest of this book.

• Rule-based decision making: In artificial intelligence, knowledge-based
agents are designed and implemented to observe environments and to
reason about possible courses of actions. In such systems, decisions are
usually made by matching input data (relevance of each environment fea-
ture) with a certain set of rules. Assume that an environment e contains
m features (i.e., e = (e1, e2, · · · , em)T), and n possible different decisions,
d1, d2, . . . , dn, that could be selected based on the presence of the envi-
ronment features. Then, a knowledge-based agent may select a specific
decision according to an m× n rule matrix by matching the input e with
column vectors of the rule matrix. If the observation vector matches the
j-th column of the matrix, then the decision dj is selected.
It is certainly impractical to have a rule matrix that contains all possible
observations, because there can be an infinite number of different obser-
vations but only a finite number of possible decisions. Moreover, observed
data can be interval-valued if one takes possible variation and measure-
ment error into consideration. In fact, decisions are often selected based on
ranges of parameter values rather than on points. Hence, an interval-valued
rule matrix is more appropriate. We study interval-valued rule matrices for
decision making in Chapter 6 of this book.

• Interval-valued matrix games: Game theory [9] has been widely used in
knowledge processing and decision making-systems. The simplest game is
a zero-sum one involving only two players. An m×n matrix G = {gij}m×n

is used to model such a two-person zero-sum game. If a row player R uses
his i-th strategy (row) while a column player C selects her j-th choice
(column), then R wins (and subsequently C loses) the amount of gij . The
objective of R is to maximize his gain while C tries to minimize her loss.

4 Interval Matrices in Knowledge Discovery 101

Theories and algorithms for solving such matrix games have been well
established.
However, due to certain forms of uncertainty in real-world applications,
outcomes of a matrix game may not be a fixed number, even though the
players do not change their strategies. Because the payoffs may vary within
a range for fixed strategies, we can use an interval-valued matrix to model
such uncertainty. Decision making with interval-valued game matrices is
discussed in Chapter 7 of this book.

• Interval-weighted graphs and networks: Weighted graphs have broad ap-
plications in various areas. In the literature, weights in a graph have been
constants. However, in real-world applications, due to some kinds of un-
certainties, weights associated with edges can vary within ranges. For in-
stance, traveling time between A and B is usually not exactly 1 hour but
between 55 and 67 minutes. To better model the variability of weights in a
graph, we should represent weights as intervals instead of constants. Using
the adjacency matrix to represent an interval-weighted graph, we obtain
an interval-valued matrix. Optimization algorithms with interval-weighted
graphs are discussed in Chapter 8 of this book.

In this chapter, we mainly discuss linear-algebra-related topics. They in-
clude ways to obtain and represent an interval matrix, different solutions of an
interval linear system, and singular value decomposition of an interval matrix.

4.1.2 Obtaining an Interval Matrix

Here let us discuss possible approaches to gathering interval valued data and
constructing interval matrices.

As we know, data attribute values often vary from time to time. Also,
related knowledge may be valid only for an associated time period. When we
process knowledge for a specified time period, the minimum and maximum of
a data attribute naturally forms an interval. For example, the NASDAQ daily
index values during the week of May 12 to 16, 2008 are intervals:

12-May-08: [2,446.36, 2,490.22]
13-May-08: [2,472.58, 2,498.07]
14-May-08: [2,493.58, 2,528.40]
15-May-08: [2,492.95, 2,535.19]
16-May-08: [2,504.18, 2,537.41]

As reported in Section 5.5 of Chapter 5 in this book, we apply this min-max
approach in financial market case studies. Using the interval-valued matrices,
we obtain astonishing computational results. Nevertheless, there are numerous
ways other than the min-max approach to obtain interval-valued data and
matrices.

Observed data can be associated with measurement error bounds. By
adding to or subtracting from the observed value with its estimated error,

102 Chenyi Hu and R. Baker Kearfott

one can form an interval. For instance, if the length of a rod is measured as
35 mm with absolute error ±0.1 mm, then the length of the rod is within the
interval [34.9, 35.1].

Also, statistical confidence intervals can be obtained according to the mean
and variance. Fuzzy mean-value intervals can be produced with LR-type fuzzy
random variables.

The best way of forming an interval-valued matrix should depend on the
application under consideration and the objectives of the study. In other
words, we do not think there is a single perfect method that fits all appli-
cations.

4.2 Interval Matrix Endpoints and Midpoint-Width
Representations

In dealing with variability and uncertainty, an interval matrix A = {aij}m×n

can be a useful model in knowledge processing. However, most existing algo-
rithms in linear algebra for a point-valued matrix cannot be applied directly
to interval matrices. For example, since the result of subtracting a nontriv-
ial interval from itself is nonzero,3 naively applying Gaussian elimination will
seldom give useful bounds on the solution set to an interval linear system of
equations; however, careful reconsideration of the algorithm may lead to good
results; see [2].

To be able to apply existing point matrix algorithms to an interval matrix,
it is necessary to reexamine and to extend the existing concepts, theories, and
algorithms for processing interval matrices. To do so, we first define interval
matrix endpoints and midpoint-width representations as follows.

Definition 2. Let A = {aij}m×n be an m× n interval matrix. The left end-
point matrix of A is the matrix AL = {aij}m×n and the right endpoint matrix
of A is the matrix AR = {aij}m×n. We call AL and AR the endpoint repre-
sentation of the interval matrix A.

By the definition, AL and AR are actually the lower and upper bounds of
A. They are often denoted as A and A in the literature.

Definition 3. Let A = {aij}m×n be an m× n interval matrix. The midpoint
matrix of A, AM , is the matrix {m(aij)}m×n, where m(aij) = a+a

2 and the
width matrix of A, AW , is the matrix {w(aij)}m×n, where w(aij) = (aij−aij).
We call that AM and AW the midpoint-width representation of the interval
matrix A.

The relationship between the endpoints and midpoint-width representa-
tions of an interval matrix A is described by the following proposition.

3 For example, [1, 2]− [1, 2] = [−1, 1] 6= 0.

4 Interval Matrices in Knowledge Discovery 103

Proposition 1. Let A = {aij}m×n be an interval matrix. Then its left
endpoint matrix is AL = AM − AW /2 and its right endpoint matrix is
AR = AM + AW /2.

Proof: The i-th row j-th column element of AL is aij . The i-th row j-th
column element of AM − AW /2 is (aij + aij)/2− (aij − aij)/2 = aij . Hence,
AL = AM −AW /2. Similarly, we can prove AR = AM + AW /2.

Corollary 1. Given any two matrices among AL, AR, AM , and AW , provided
that entries of AW are non-negative, one can find the other two.

The endpoints, midpoint, and width of an interval matrix A, AL, AR,
AM , and AW are point matrices. More importantly, they are meaningful in
terms of knowledge discovery. Whereas AL and AR represent the lower and
upper bounds of A, AM is the center, or the arithmetic average, of A and AW

reflects the range of variations of A. Hence, we can apply existing algorithms
for a point matrix to study the properties of an interval matrix.

Other than using the midpoint matrix of an interval matrix, one may use a
“center of gravity” for the interval matrix. According to fuzzy logic, the center
of gravity may be different from the midpoint of an interval matrix. However,
representing an interval matrix with its center of gravity and modified width
matrices is beyond the scope of this chapter. We now conclude this section
with an example involving interval matrix endpoints and midpoint-width rep-
resentations.

Example 1. Find the AR, AM , and A, provided

AL =

 0 6 −2 −4
5 2 1 3
−8 −1 0 20

 ,

AW =

1 1 2 2
1 5 2 0
3 1 0 5

 .

Solution: Since AL = AM −AW /2, we have

AM = AL + AW /2 =

 0.5 6.5 −1 − 3
5.5 4.5 2 3
−6.5 −0.5 0 22.5

 .

Hence,

AR = AM + AW /2 =

 1 7 0 −2
6 7 3 3
−5 0 0 25

 .

Therefore,

A = [AL, AR] =

 [0, 1] [6, 7] [−2, 0] [−4,−2]
[5, 6] [2, 7] [1, 3] [3, 3]

[−8,−5] [−1, 0] [0, 0] [20, 25]

 .

104 Chenyi Hu and R. Baker Kearfott

4.3 Approximated Solutions for Interval Linear Systems
of Equations

Finding numerical solutions to linear systems of equations has been a focal
point of study in computational linear algebra. Mature computational algo-
rithms, such as Gaussian elimination with scaled partial pivoting, and solid
error analysis methods are shining results. Although such results often pro-
vide guidelines, it is not trivial to apply them directly to solve interval linear
systems of equations.

In solving interval systems, we need to keep in mind the objectives of the
computation. In addition, we should take the properties of interval arithmetic
into consideration to determine the practicality of computing. Along these
lines, we now consider the concept of a solution set for an interval linear
system of equations.

To highlight differences between real linear systems of equations and in-
terval systems of equations, consider the following example.

Example 2. (Exact satisfaction of linear interval equations)

1. Consider the linear interval equation [2, 3]x = [4, 6]. The trivial interval
x = [2, 2] satisfies the equation perfectly, in the sense that the left interval
is equal to the right interval.

2. However, with a slight change on the above equation, there does not ex-
ist an interval x such that [2, 3]x = [4, 5]. (If there were such an inter-
val x, then the lower bound of x must be positive, since the product
would otherwise be nonpositive. Hence, x would be a positive interval
and [2, 3][x, x] = [2x, 3x] = [4, 5], whence x = 4/2 = 2 and x = 5/3 < x, a
contradiction.)

Thus, the very definition of a solution set needs to be considered if we are to
use interval computations meaningfully.

We now assume that A is an n × n interval matrix and b is an interval
n-vector . There are various definitions of a solution set to Ax = b in the
interval computing literature. The most common one, often called simply the
“solution set” to an interval system of equations, is the united solution set :

{x ∈ Rn | ∃A ∈ A and ∃b ∈ b such that Ax = b} ;

that is, the united solution set is the set of all possible solutions as the matrix
ranges across the interval matrix A and the right-hand-side vector ranges over
the interval vector b. However, this mathematical definition does not directly
imply a practical algorithm to identify the solution set computationally. In
fact, the solution set for an interval linear system is usually no-convex, see
[10]. Furthermore, finding the solution set exactly is NP-complete; see, for ex-
ample, [7]. Thus, existing interval linear solvers, such as the Krawczyk solver,
preconditioned interval Gaussian elimination, or the preconditioned interval
Gauss–Seidel method, find an interval vector x that encloses the solution set

4 Interval Matrices in Knowledge Discovery 105

rather than the solution set itself. Hence, not only is Ax ⊇ b, but, since the
solution set is approximated by an “outer enclosure” x, there are usually some
x ∈ x such that there are no A ∈ A and b ∈ b satisfying Ax = b. However,
such false solutions can be very misleading in knowledge discovery.

Alternate definitions of solution sets in the interval literature, stemming
largely from work of Shary, appear along with references to earlier work in [3].
To avoid inclusion of false solutions, an appropriate solution set in knowledge
discovery is the tolerable solution set, defined as follows.

Definition 4. (Shary et al.) The tolerable solution set to the interval linear
system of equations Ax = b is the set

{x ∈ Rn | for every A ∈ A there exists a b ∈ b with Ax = b} .

In knowledge reliability, one usually prefers to find an interval vector x
such that Ax ⊆ b, to avoid false point solutions. In the terminology of the
interval computations literature, an inner approximation to the tolerable solu-
tion set is sought. In the remainder of this chapter, we will refer to such inner
approximations to the tolerable solution sets as inner approximated solutions.
We will also refer to interval vectors x that somehow approximate some kind
of solution set to Ax = b, but for which possibly either Ax ⊂ b or Ax ⊃ b,
simply as approximated solutions.

Appropriate questions that need to be answered are the following:

1. For an interval matrix An×n and an interval n-vector b, is there an interval
n-vector x such that Ax ⊆ b?

2. How does one determine if one approximated solution is better than an-
other?

The answer for the first question can be either positive or negative depend-
ing on A and b. The following proposition provides necessary and sufficient
conditions, for the one-dimensional case, for existence of an inner approxi-
mated solution.

Proposition 2. Let a > 0 and b ≥ 0 be two intervals. There exists an interval
x ≥ 0 such that ax ⊆ b if and only if ab ≤ ab.

Proof. If such an interval x exists, then x ≥ 0; this is because x < 0 and
a > 0 imply that the lower bound of ax is less than zero, so b would also
need to be less than zero. Therefore, b ≤ ax ≤ ax ≤ b. Hence, b/a ≤ x and
x ≤ b/a. From x ≤ x, we have b/a ≤ b/a (i. e., ab ≤ ab).

For the converse, assume there is an interval x ≥ 0 that satisfies ax ⊆ b.
Then b/a ≤ x and x ≤ b/a. If we also assume ab > ab, we would then have
b/a > b/a, which in turn would imply x > x, a contradiction. Therefore,
ax ⊆ b.

Applying the proposition, we can easily verify that the equation [2, 3]x =
[4, 5] does not have an inner approximated solution, since ab = 15 > 10 = ab.

106 Chenyi Hu and R. Baker Kearfott

Corollary 2. Let a > 0 and b ≥ 0 be intervals. If ab = ab, then there exists
an interval x that satisfies ax = b. Furthermore, x is degenerate and

x = x =
b

a
=

b

a
.

Proof. If ab = ab, from Proposition 2, there is an interval x ≥ 0 such that
ax ⊆ b. Therefore, b ≤ ax and ax ≤ b. Since ab = ab, we have b/a = b/a.
Since b/a ≤ x ≤ x ≤ b/a, we have x = x = b/a = b/a.

From the corollary, the equation [2, 3]x = [4, 6] has a degenerate solution
x = 2. However, ab = ab is not a necessary condition for the existence of x that
satisfies ax ⊆ b. For example, the interval x = [2, 3] satisfies [1, 2]x = [2, 6],
but ab = 4 < 6 = ab.

As mentioned, we prefer an inner approximation to the tolerable solution
set rather than an enclosure of the united solution set when dealing with
knowledge reliability. It is a valid open mathematical question to find neces-
sary and sufficient conditions for the existence of an inner approximation for
a general n × n interval linear system of equations. However, in the practice
of knowledge processing, one may select a satisfactory approximated solution.
We need a notion to compare approximated solutions. To do so, we use the ra-
tio of the volumes of b and Ax as a quality measurement of an approximated
solution. The volume of an interval vector y = (y1,y2, . . . ,yn) is denoted by

v(y) =
∏

1≤i≤n

(yi − y
i
).

It is obvious that the volume of an interval is the same as the width of
that interval.

Definition 5. Let x be an approximated solution of Ax = b. The ratio of the
estimation is defined to be

0 if Ax ∩ b = ∅;
1 if Ax = b;
v(b)

v(Ax)
if Ax ⊃ b;

v(Ax)
v(b)

if Ax ⊂ b;

v(Ax ∩ b)
v(Ax ∪ b)

otherwise.

Although the ratio of estimation is a good indicator, it should not be the
only consideration. Since an inner approximated solution relates to informa-
tion reliability, it should be considered first in knowledge processing.

Example 3. Find approximated solutions for the interval equation [2, 3]x =
[4, 5] and then compare their ratios of estimation.

4 Interval Matrices in Knowledge Discovery 107

Solution: As we discussed in Example 1, there does not exist an interval x
such that [2, 3]x = [4, 5] exactly, nor does there exist an inner approximation.
To obtain an interval x, we apply the following approaches:

• First, we apply the naive approach of dividing the interval [4, 5] by the
coefficient [2, 3] with interval arithmetic. We obtain x ≈ [4, 5]/[2, 3] =
[4/3, 5/2] and [2, 3][4/3, 5/2] = [8/3, 15/2] ⊃ [4, 5]. The ratio of the esti-
mation is

5− 4
15/2− 8/3

= 6/29 ≈ 20.7%.

• Applying the endpoint representations, we obtain the left- and right- end-
point equations as 2x = 4 and 3x = 5.
– From the left equation, we have x = 2 and

[2, 3] ∗ 2 = [4, 6] ⊃ [4, 5].

The estimation ratio is 50%.
– From the right equation, we have x = 5/3 and

[2, 3] ∗ 5/3 = [10/3, 15/3] ⊃ [4, 5],

for an estimation ratio of 60%.
• Using the central point equation m([2, 3])x = m([4, 5]) (i.e., 2.5m(x) = 4.5,

we have x = 9/5 and

[2, 3][9/5, 9/5] = [18/5, 27/5] ⊃ [4, 5],

for an estimation ratio of

1
27/5− 18/5

= 5/9 ≈ 55.6%.

The estimation ratios are 60% (right endpoint equation), 55.6% (midpoint
equation), 50% (left endpoint equation), and 20% (interval arithmetic). Ac-
tually, 60% is the highest estimation ratio among all intervals x that satisfies
[2, 3]x ⊃ [4, 5]. This is because that is the solution of the optimization prob-
lem:

Maximize:
5− 4

3x− 2x

Subject to:
(i) 2x ≤ 4,

(ii) 3x ≥ 5, and

(iii) x ≤ x.

108 Chenyi Hu and R. Baker Kearfott

In general, the coefficient matrix can be an n × n matrix and n > 1. If
we use yi to represent the interval dot product of the i-th row of A and x
(i. e., yi =

∑
1≤j≤n aijxj), then finding the “best” approximated solution

for Ax = b, in terms of maximizing the estimation ratio, is a constrained
nonlinear optimization problem.

Again, in practice, we may use the endpoints and/or midpoint-width rep-
resentations as we have done in the above example to find an approximated
solution x instead. Such approximated solutions may not be the best (i. e.,
they may not have the highest possible estimation ratios), but they can be
good enough in practice.

The approximated solutions obtained with endpoint or midpoint matri-
ces, if they exist, are degenerate interval vectors, that is, the lower and upper
bounds are the same. By adding an ε > 0 and/or subtracting it from entries of
a degenerated interval vector, we can obtain a nondegenerate interval vector.
This process is called an ε-inflation. For a degenerate approximated solution,
we may perform an ε-inflation to obtain an approximated interval vector solu-
tion with a higher estimation ratio. We use the following example to illustrate
this idea.

Example 4. Find an approximated solution for the interval system of equations
Ax = b and then improve its quality, where

A =

 [0, 2] [6, 8] [−2, 0]
[5, 7] [2, 6] [1, 3]

[−8,−4] [−1, 1] [1, 2]

 ,

b =

 [−9, 5]
[3, 9]

[−2, 4]

 .

To apply the midpoint equation AMx = bM for an approximated solution,
we calculate

AM =

 1 7 −1
6 4 2
−6 0 1.5

 , and

bM =

−2
6
1

 .

We then obtain the approximated point solution

x =

 0.345455
−0.0424242

2.04848

 , and

4 Interval Matrices in Knowledge Discovery 109

Ax =

 [−4.43636, 0.436364]
[3.52121, 8.47879]

[−0.757576, 2.75758]

 ⊂ b.

The solution vector is an inner approximation, since Ax ⊂ b. The estima-
tion ratio is

v(Ax)
v(b)

= 0.484073.

We use ε = 0.043 and perform the ε-inflation on both sides of every entry
of x. Then we have

x∗ =

 [0.302455, 0.388455]
[−0.0854242, 0.000575758]

[2.00548, 2.09148]

 .

This results in

Ax∗ =

 [−4.86636, 0.781515]
[3.00521, 8.99709]

[−1.18758, 3.05858]

 ⊂ b.

The estimation ratio for x∗, which is also an inner approximation, is 0.706734.
Certainly, one can perform an ε-inflation to selected entries (and/or se-

lected sides with even different ε value) of x to obtain approximated solution
x for an even higher estimation ratio.

4.4 Singular Value Decomposition for an Interval Matrix

It goes without saying that computational linear algebra plays an essential
role in knowledge processing. The concept and algorithms of the singular value
decomposition (SVD) for point-valued matrices are among the most signifi-
cant results in computational linear algebra. To study the SVD for interval
matrices, let us first review the definition for a point-valued matrix.

Definition 6. Let A = {aij}m×n be an m×n real matrix. Then there exist an
m×m orthogonal matrix U , an m× n diagonal matrix Σ with non-negative
diagonal entries, and an n × n orthogonal matrix V such that A = UΣV T .
The diagonal elements σi, 1 ≤ i ≤ min{m,n}, of Σ, are called the singular
values of the matrix A; the decomposition is normally computed in such a way
that σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0. The triplet {U,Σ, V } is called a singular
value decomposition (SVD) of A, and the σi are called the singular values of
A.

The SVD has been one of the most effective tools in solving least squares
problems with data, and it is applied in a wide variety of applications, such
as control theory, image processing, pattern recognition, time series analysis,
and semantic indexing of documents.

We may be tempted to define the SVD for interval matrices as follows.

110 Chenyi Hu and R. Baker Kearfott

Definition 7. (Naive definition of the interval SVD) Let A = {aij}m×n be
an m × n interval matrix and let the SVD of a point valued m × n matrix
A ∈ A be A = UAΣAV T

A . The three sets U = {UA|A ∈ A, A = UAΣAV T
A },

Σ = {ΣA|A ∈ A, A = UAΣAV T
A }, and V = {VA|A ∈ A, A = UAΣAV T

A }
form a singular value decomposition of A.

There are various problems with the above definition. For instance, the
SVD of a point matrix is not unique. For example, if A is the 2 × 2 identity
matrix and U is any orthogonal matrix, then, setting V = U , and Σ = I,
UΣV ′ is an SVD of A. In this case, defining U and V according to Definition 7,
the smallest interval matrices Ũ and Ṽ that would contain the sets U and
V would have ũi,j = ṽi,j = [−1, 1], i, j = 1, 2, not a particularly meaningful
result. (U can be the identity matrix I, U can be −I, U can have 0’s on the
diagonal and 1’s off the diagonal, or U can have 0’s on the diagonal and −1’s
off the diagonal.)

There has been some work at computing the singular values, such as in
Deif [5], and Ahn and Chen [1] explain how to compute the exact maximum
singular value of an interval matrix. However, computation of bounds Ũ and
Ṽ for the singular vectors can be more problematical, even in well-behaved
cases, such as when each A ∈ A is symmetric positive definite with distinct
eigenvalues. Nonetheless, in knowledge processing, it may not be necessary to
compute bounds on the entire sets U ,V , and Σ. The endpoints, midpoint,
and the width matrices of an interval matrix are point-valued and have special
meanings. We can compute an SVD for the AL, AR, AM , and AW matrices to
discover related information. This should reveal useful information about an
interval matrix. We use the following example to illustrate this idea.

Example 5. Analyze the behavior of the center and the variation for the in-
terval matrix

A =

 [0, 2] [6, 8] [−2, 0] [−4,−2]
[5, 7] [2, 6] [1, 3] [3, 3]

[−8,−4] [−1, 1] [0, 0] [20, 22]

 .

The midpoint-width representation of A is

AM =

 1 7 −1 −3
6 4 2 3
−6 0 0 21

 ,

AW =

2 2 2 2
2 4 2 0
4 2 0 2

 .

Computing an SVD for the midpoint (center) matrix with MATLAB, we obtain
AM = UM ∗ΣM ∗ V T

M , where

4 Interval Matrices in Knowledge Discovery 111

UM ≈

−0.1556 −0.6053 0.7807
0.0543 −0.7943 −0.6051
0.9863 −0.0517 0.1565

 ,

ΣM ≈

22.1217 0 0 0
0 9.1807 0 0
0 0 5.3238 0

 ,

VM ≈


−0.2598 −0.5512 −0.7116 −0.3496
−0.0394 −0.8076 0.5718 0.1387

0.0119 −0.1071 −0.3739 0.9212
0.9648 −0.1801 −0.1637 −0.0999

 .

From ΣM , we can see that the most significant singular value related to the
midpoint matrix is greater than the sum of the other two.

Similarly, we compute an SVD for the width (variation) matrix and obtain
AW = UW ∗ΣW ∗ V T

W , where

UW ≈

−0.5155 0.0000 0.8569
−0.6059 −0.7071 −0.3645
−0.6059 0.7071 −0.3645

 ,

ΣW ≈

7.3221 0 0 0
0 2.8284 0 0
0 0 1.5452 0

 ,

VW ≈


−0.6373 0.5000 −0.3063 −0.5000
−0.6373 −0.5000 −0.3063 0.5000
−0.3063 −0.5000 0.6373 −0.5000
−0.3063 0.5000 0.6373 0.5000

 .

An important application of the SVD is principal component analysis
(PCA), which approximates a general m×n matrix A by a sum of rank 1 ma-
trices as A =

∑
i≤min{m,n} Ei, where Ei = σiUiV

T
i . Using the first principal

component to approximate the midpoint matrix AM , we obtain

AM ≈ EM1 ≈

 0.8943 0.1357 −0.0411 −3.3208
−0.3122 −0.0474 0.0144 1.1593
−5.6690 −0.8599 0.2606 21.0508

 .

Similarly, we approximate the width matrix AW by its first principal compo-
nent, obtaining

AW ≈ EW1 ≈

2.4056 2.4056 1.1562 1.1562
2.8275 2.8275 1.3590 1.3590
2.8275 2.8275 1.3590 1.3590

 .

Then we can approximate A with [EM1 − EW1/2, EM1 + EW1/2] as

A≈

 [−0.3085, 2.0971] [−1.0671, 1.3384] [−0.6192, 0.5370] [−3.8988,−2.7427]
[−1.7260, 1.1015] [−1.4611, 1.3664] [−0.6651, 0.6938] [0.4799, 1.8388]
[−7.0828,−4.2553] [−2.2737, 0.5538] [−0.4189, 0.9401] [20.3713, 21.7303]

 .

112 Chenyi Hu and R. Baker Kearfott

This approximation looks significantly different from A, but it maintains
the most important characteristics of the midpoint and width of A. In terms
of knowledge processing, the approximation filters out relatively insignificant
features of the original data. (We illustrate this with examples in Section 4.5.)

The midpoint and width matrices represent the average and the variability
of an interval matrix and related data. Their PCA can be used to form an
interval matrix Ã that approximates the original matrix A but that represents
a proper subset of A. Therefore, studying the SVD of an interval matrix
with its midpoint-width representation is a preferred approach in knowledge
representation.

Of course, one may also apply PCA to the endpoint matrices. However,
the approximations of endpoint matrices may not necessarily reconstruct an
interval matrix. For example, the rank 1 approximation of the left and right
endpoint approximations of the above interval matrix A are

AL ≈ EL1 ≈

 1.5069 0.4112 −0.0860 −4.0474
−0.3098 −0.0845 0.0177 0.8321
−7.4762 −2.0401 0.4265 20.0803

 , and

AR ≈ ER1 ≈

 0.3043 −0.0756 −0.0251 −1.9513
−0.3313 0.0823 0.0273 2.1241
−3.4448 0.8557 0.2836 22.0885

 .

Since there are elements in EL1 that are greater than corresponding entries
in ER1 , [EL1 , ER1] does not represent a valid interval matrix. This gives us
another reason for the preference for using the midpoint-width representation
in studying the SVD of an interval matrix.

4.5 An Application

In this section, we study an application of the interval matrix SVD to the
annual behavior of the S & P 500 index. Chen, Roll, and Ross in [4] state
that changes in the overall stock market value (SPt) are linearly determined
by the following five macroeconomic factors: the growth rate variations of
seasonally adjusted Industrial Production Index (IPt), changes in expected
inflation (DIt) and unexpected inflation (UIt), default risk premiums (DFt),
and unexpected changes in interest rates (TMt). This relationship can be
expressed as

SPt = at + It(IPt) + Ut(UIt) + Dt(DIt) + Ft(DFt) + Tt(TMt).

The dataset available for this study consists of monthly point data re-
lated to these attributes from January 1930 to December, 2004. The complete
dataset is available from the website for this book. Here are the first and the
last few sample lines of data:

4 Interval Matrices in Knowledge Discovery 113

Yr-mth UI DI SP IP DF TM

30-Jan -0.00897673 0 0.014382062 -0.003860512 0.0116 -0.0094

30-Feb -0.00671673 -0.0023 0.060760088 -0.015592832 -0.0057 0.0115

30-Mar -0.00834673 0.0016 0.037017628 -0.00788855 0.0055 0.0053

30-Apr 0.00295327 0.0005 0.061557893 -0.015966279 0.01 -0.0051

30-May -0.00744673 -0.0014 -0.061557893 -0.028707502 -0.0082 0.0118

30-Jun -0.00797673 0.0005 -0.106567965 -0.046763234 0.0059 0.0025

30-Jul -0.01414673 0.0004 -0.021607229 -0.02193391 0.0022 0.0007

30-Aug -0.00748673 -0.0007 -0.012903405 -0.017900239 0.0123 -0.0007

30-Sep 0.00569327 -0.0011 -0.000481116 -0.027620585 0.0034 0.0065

30-Oct -0.00768673 0.0013 -0.148073578 -0.023482607 0.0019 0.0013

30-Nov -0.00642673 -0.0013 -0.075310618 -0.024047327 -0.0054 0.0033

30-Dec -0.01924673 0.0004 -0.069121812 -0.004879645 -0.002 -0.0083

...

04-Sep 0.00156327 0.0001 0.026033651 0.007217235 0.0005 0.0085

04-Oct 0.00470327 0 0.000368476 0.002001341 0.001 0.0143

04-Nov -0.00002273 0 0.044493038 0.006654848 0.0034 -0.0245

04-Dec -0.00461673 0.0004 0.025567309 0.001918659 0.0007 0.0235

In studying the annual behavior of the stock market, we can reduce the above
point matrix to a smaller interval matrix by using the annual minimum and
maximum for each attribute. For example, the above point-valued data from
January 1930 to December 1930 result in the intervals

UI1930 = [−0.01924673, 0.00569327],
DI1930 = [−0.0023, 0.0016],
SP1930 = [−0.148073578, 0.061557893],
IP1930 = [−0.046763234,−0.003860512],

DF1930 = [−0.0082, 0.0123],
TM1930 = [−0.0094, 0.0118].

Hence, the monthly data from January 1930 to December 2004 form a 75× 6
interval matrix A, from which we compute the midpoint and width matrices
AM and AW for the midpoint-width representation of A. In studying the
behavior of the midpoint of the S & P 500 index during the 75 years between
1930 and 2004, we perform a discrete Fourier analysis on the SP column of
AM . It reveals a strong period of 3.083 years, as is shown in Figure 4.1.

Using matlab to compute an SVD for the midpoint matrix AM , we obtain
its singular value matrix:

ΣM ≈


0.2202 0 0 0 0 0

0 0.1030 0 0 0 0
0 0 0.0904 0 0 0
0 0 0 0.0417 0 0
0 0 0 0 0.0340 0
0 0 0 0 0 0.0019

 .

114 Chenyi Hu and R. Baker Kearfott

Fig. 4.1. Discrete Fourier analysis for the midpoint matrix for the S & P 500 data
from 1930 to 2004.

Since the first singular value is significantly larger than the others, we use
the first principal component to approximate the midpoint matrix. Then we
perform the discrete Fourier analysis again, but on the SP column of the
rank 1 approximation of AM . It also reveals a strong period of 3.083 years,
as is seen in Figure 4.2. Actually, one would have a difficult time finding very
significant differences between Figures 4.1 and 4.2. This implies that the first
PCA approximates AM fairly well. However, the calculated 1-norm between
the two vectors is about 0.1291.

Similarly, let us investigate the width matrix AW with PCA. By perform-
ing the SVD on the width matrix AW , we obtain the singular value matrix

ΣW ≈


1.5416 0 0 0 0 0

0 0.4755 0 0 0 0
0 0 0.2691 0 0 0
0 0 0 0.1382 0 0
0 0 0 0 0.0591 0
0 0 0 0 0 0.0090

 .

We use the first principal component to approximate the width matrix AW ,
since its first singular value is significantly larger than the others. Figures 4.3
and 4.4 show the results of discrete Fourier analysis on the width of the S &
P 500 and its first principal component approximation. Both of them indicate
that the annual variation range (width) of the S & P 500 has a significant
period of 37 years. However, the 1-norm of the difference between the width
vector and its first principal component estimation is 1.1090.

4 Interval Matrices in Knowledge Discovery 115

Fig. 4.2. Discrete Fourier analysis for the first PCA of the S & P 500 midpoint
matrix

Fig. 4.3. Discrete Fourier analysis for the width matrix for the S & P 500 data
from 1930 to 2004.

In this application, we see that a lower-rank PCA approximation can pre-
serve significant information of the midpoint and width matrices of an interval
matrix well. By properly combining the information for both midpoint and
width matrices, one may obtain related knowledge. Applying PCA to the

116 Chenyi Hu and R. Baker Kearfott

Fig. 4.4. Discrete Fourier analysis for the first PCA of the S & P midpoint matrix

midpoint-width representation of an interval matrix has a great potential in
knowledge processing on interval-valued, high-dimensional massive datasets.

We note that others, such as Lauro et al. have considered PCA on interval
data in [6] and [8]. However, the emphasis in those studies has been on ob-
taining sharp outer approximations. In contrast, in our approach, we obtain
inner approximations, then use ε-inflation to obtain better inner approxima-
tions. In applications where rigorous enclosures of the exact solution set are
not required, our simple approach may yield usable results in more cases.

The object-oriented environment [11] for interval matrices used to study
this application is reported in Chapter 10 of this book.

4.6 Conclusions

In this chapter, we have investigated the usefulness of interval matrices in
knowledge processing. The endpoint and midpoint-width representations of
an interval matrix reflect the bounds, center, and variance ranges of datasets.
Hence, they are important characteristics in knowledge processing.

We have focused our study on interval linear algebra related topics in this
chapter. For an interval linear system of equations, in terms of knowledge
reliability, we are interested more in finding inner approximated solutions
rather than an enclosure containing all point solutions. We have developed
the concept of estimation ratio as a useful quality indicator.

The singular value decomposition and principal component analysis on the
midpoint and width matrices of an interval matrix can be very powerful tools

4 Interval Matrices in Knowledge Discovery 117

for information discovery and dimension reduction. This is evidenced by the
application to the analysis of the S & P 500 data from 1930 to 2004. The
computational results reveal knowledge unknown before.

Acknowledgment: This work is partially supported by the U.S. National Sci-
ence Foundation under grants CISE/CCF-0202042 and CISE/CCF-0727798.
Dr. Ling T. He, Professor of Finance at the University of Central Arkansas,
provided the dataset used in Section 4.5.

References

1. Ahn, H.S., Chen, Y.Q.: Exact maximum singular value calculation of an interval
matrix. IEEE Transactions on Automatic Control 52, 510–514 (2007)

2. Alefeld, G.: Über Die Durchführbarkeit Des Gaussschen Algorithmus bei Gle-
ichungen mit Intervallen als Koeffizienten. Computing 1 (Supplementum), 15-19
(1977)

3. Chabert, G., Goldsztejn, A.: Extension of the Hansen-Bliek method to right-
quantified linear systems. Reliable Computing 13(4), 325–349 (2007)

4. Chen, N.F., Roll, R., Ross, S.A.: Economic forces and the stock market. Journal
of Business 59(3), 383–403 (1986). http://ideas.repec.org/a/ucp/jnlbus/

v59y1986i3p383-403.html

5. Deif, A.S.: Singular values of an interval matrix. Linear Algebra and its Appli-
cations 151, 125–133 (1991)

6. Gioia, F., Lauro, C.N.: Principal component analysis on interval data. Compu-
tational Statistics 21(2), 343–363 (2006)

7. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations. Applied Optimization
Vol. 10. Kluwer Academic Publishers Group, Norwell, MA (1998)

8. Lauro, C., Palumbo, F.: New approaches to principal component analysis of
interval data (1998). citeseer.ist.psu.edu/lauro98new.html

9. Nash, J.: Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America 36, 48–49 (1950)

10. Neumaier, A.: Interval Methods for Systems of Equations, Encyclopedia of
Mathematics and its Applications, Vol. 37. Cambridge University Press, Cam-
bridge, UK (1990)

11. Nooner, M., Hu, C.: A computational environment for interval matrices. In: R.L.
Muhanna, R.L. Mullen (eds.)Proceedings of a workshop on Reliable Engineering
Computing, pp. 65–74. Georgia Tech. University, Savanna, GA (2006) http:

//www.gtsav.gatech.edu/workshop/rec06/proceedings.html

http://ideas.repec.org/a/ucp/jnlbus/v59y1986i3p383-403.html
http://ideas.repec.org/a/ucp/jnlbus/v59y1986i3p383-403.html
citeseer.ist.psu.edu/lauro98new.html
http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html
http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html

5

Interval Function Approximation and
Applications

Chenyi Hu1, Ling T. He2, and Shanying Xu3

1 Department of Computer Science, University of Central Arkansas, 201 Donaghey
Avenue, Conway, AR 72035-0001, USA. chu@uca.edu

2 Department of Economics and Finance, University of Central Arkansas, 201
Donaghey Avenue, Conway, AR 72035-0001, USA. linghe@uca.edu

3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing, China. xsy@iss.ac.cn

In this chapter, we use interval functions to describe uncertainties that appear
as variabilities of observed data under similar conditions. We then propose
practical algorithms to approximate an interval function. By applying the
proposed algorithm to actual stock market and crude oil prices data, we obtain
quality forecasts as two case studies.

5.1 Introduction

5.1.1 Interval Function

Functions have been among the most studied topics in mathematics and ap-
plications. If the analytical form of a function is provided, one can analyze
properties and behavior of the function very well. However, in real-world ap-
plications, the analytical form of a function is often unknown. Moreover, in
using a function y = f(x) to model real-world phenomena, multiple observa-
tions of y for a fixed x can often be different. This reflects uncertainties that
are traditionally modeled with probability theory as random noise. We notice
that the variations of a function value are usually within an interval rather
than completely random. Imprecise measurement and control can also cause
the value of x to be within an interval rather than an exact point. Therefore,
an observation can be recorded as an interval-valued pair (x,y).

A real-valued function f can be a volatile in a domain D. This means
that the sign of its derivative alternates frequently within any small subset
of D. Real-world examples of volatile functions include stock prices during a
volatile trading day or recorded seismic waves. Figure 5.1 illustrates a volatile
function4. For such functions, it would be more appropriate to record an obser-
4 This figure is provided by Mr. Michael Nooner.

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 5, c© Springer-Verlag London Limited 2008

chu@uca.edu
linghe@uca.edu
xsy@iss.ac.cn

120 Chenyi Hu, Ling T. He, and Shanying Xu

vation with an interval-valued pair (x,y) rather than a point. This is mainly
because of the following two reasons. First, it would be hard to precisely de-
termine the exact point due to measurement difficulty. Second, even if one
can measure discrete point pairs (x, y) precisely, such pairs do not properly
reflect the volatile behavior of the function. Hence, such point pairs in classical
function approximation can be misleading.

Fig. 5.1. A volatile function.

In this chapter, we view uncertainty as function volatility modeled with
interval-valued functions. We extend classical function definition to the con-
cept of interval function as follows.

Definition 1. Let f be a mapping from Rn → R and let ~x be an interval vector
in Rn (i.e., each component of x is an interval in R). If for any interval vector
~x there is an interval y such that f(~x) = y, then f is an interval function.

When both x and y are degenerate, an interval function is the same as a
classical function. On the other hand, a classical function can also be viewed
as an interval function. This is because the range of a function over an x in
the domain is usually an interval.

5.1.2 Interval Function Approximation

Using observed discrete data pairs (x, y) to computationally approximate an
unknown function has been intensively studied. Our objective here is to estab-
lish a general algorithm to approximate an unknown interval function, given

5 Interval Function Approximation and Applications 121

a collection of interval-valued pairs (x,y). Algorithms for interpolating inter-
val functions have been discussed in [9]. Interval least squares (ILS) function
approximation and applications are reported in [8], [10], [7] and [15]. In this
chapter, we focus on least squares approximation, since it is probably the most
broadly used computational method in function approximation.

5.2 Least Squares Approximation

Let us briefly review the principle and computational methods for least squares
approximation.

Definition 2. Let F be a function space, and let Φ = {ϕ0, ϕ1, . . . , ϕn, . . .} be
a set of functions in F . We say that Φ is a basis for F if for any function
f ∈ F and any given ε > 0, there is a linear combination of ϕ,

f =
∑

j

αjϕj ,

such that
|f(x)−

∑
j

αjϕj | < ε

for all x in the domain.

For example, the set {1, x, x2, . . .} is a basis for both polynomial function
space and for continuous function space. Commonly used bases for a contin-
uous function space include Chebyshev polynomials, Legendre polynomials,
sine/cosine functions, and others.

For a continuous function f (or even if f has a countable number of dis-
continuities), we may approximate f as

f(x) ≈
∑

0≤j≤m

αjϕj(x),

where {ϕj}mj=1 is a preselected set of m basis functions. To determine the coef-
ficient vector α = (α0, α1, . . . , αm)T , the least squares principle requires that
the integral of the squares of the differences between f(x) and

∑
0≤j≤m

αjϕj(x)

be minimized. In other words, applying the least squares principle to ap-
proximating a function f , one selects the vector α = (α0, α1, · · · , αm)T that
minimizes ∫ (

f(x)−
∑

0≤j≤m

αjϕj(x)
)2

dx.

In real-world applications, one usually only knows a collection of N pairs
of (xi, yi), rather than the function y = f(x). Therefore, one finds an approx-
imation to f by minimizing the following total sum instead:

122 Chenyi Hu, Ling T. He, and Shanying Xu

N∑
i=1

yi −
∑

0≤j≤m

αjϕj(xi)

2

The classical algorithm that computationally determines the coefficient vector
α is as follows.

Algorithm 1 (Classical least squares)

1. Evaluate the basis functions ϕj(x) at xi for all 1 ≤ i ≤ N and 1 ≤ j ≤ m.
2. Form the matrix

A =



N
∑

i

ϕ1

∑
i

ϕ2 · · ·
∑

i

ϕm∑
i

ϕ1

∑
i

ϕ2
1

∑
i

ϕ1ϕ2 · · ·
∑

i

ϕ1ϕm∑
i

ϕ2

∑
i

ϕ2ϕ1

∑
i

ϕ2
2 · · ·

∑
i

ϕ2ϕm

...
...

...
. . .

...∑
i

ϕm

∑
i

ϕmϕ1

∑
i

ϕmϕ2 · · ·
∑

i

ϕ2
m


(5.1)

and the vector

b =

(∑
i

yi

∑
i

yiϕ1(xi)
∑

i

yiϕ2(xi) · · ·
∑

i

yiϕm(xi)

)T

. (5.2)

3. Solve the linear system of equations Aα = b for α.

The above linear system of equations Aα = b is called the set of normal
equations. Instead of the normal equations, a more recent approach applies a
design matrix with a sequence of Householder transformations5 to estimate
the vector α. For details concerning Householder transformations, readers may
refer to [11] or most books that cover computational linear algebra. Using
Householder transformations, least squares function approximation can be
described as follows.

Algorithm 2 (Least squares with Householder transformations)

1. Evaluate the basis functions ϕj(x) at xi for all 0 ≤ i ≤ n and 1 ≤ j ≤ m.

5 That is, modern point algorithms use a QR factorization or a singular value
decomposition to avoid ill-conditioning of the matrix (5.1), whereas the normal
equations are mostly of theoretical interest.

5 Interval Function Approximation and Applications 123

2. Form the design matrix

X =


ϕ1(x1) ϕ2(x1) · · · ϕm(x1)
ϕ1(x2) ϕ2(x2) · · · ϕm(x2)
· · · · · · · · · · · ·

ϕ1(xi) ϕ2(xi) · · · ϕm(xi)
· · · · · · · · · · · ·

ϕ1(xN) ϕ2(xN) · · · ϕm(xN)

 . (5.3)

3. Perform a sequence of Householder transformations to X to produce an
upper triangular matrix R;

4. Apply the same sequence of Householder transformations, in the same
order, to the vector (y1, y2, . . . , yN)T and obtain a vector z.

5. Solve Rα = z for α.

Computing a point least squares approximation using either Algorithm 1
or Algorithm 2 is called ordinary least squares (OLS) approximation.

5.3 Interval Function Approximation

Most, if not all, previous studies on least squares approximation assume point-
valued data. There are several computational issues that need to be considered
to apply the above algorithms to interval-valued pairs (x,y) to approximate
an interval function.

5.3.1 Computational Challenges

With interval arithmetic [12], it is straightforward to perform both steps 1 and
2 in Algorithm 1. However, it presents a challenge in step 3. This is because
the normal equations are now interval systems of linear equations Aα = b.
The solution set of an interval linear system of equations is mostly irregu-
larly shaped and nonconvex [13]. A naive application of interval arithmetic to
bound the solution vector α may cause serious overestimation. Using the de-
sign matrix approach would not solve the problem, since finding a Householder
transformation for an interval matrix remains a challenge.

5.3.2 An Inner Approximation Approach

As discussed in the previous chapter, an interval x = [x, x] can be represented
by its midpoint mid(x) = (x + x)/2 and its width w(x) = x − x. We can
take a two-step approach of considering the midpoint and width separately to
determine α. In the step 3 of Algorithm 1, let us first find the midpoint vector
of α, which is a point vector. This suggests matching the center of the two
interval vectors Aα and b in the interval linear system of equations Aα = b.

124 Chenyi Hu, Ling T. He, and Shanying Xu

Let Amid be the midpoint matrix of A and let bmid be the midpoint vector of
b. We solve the linear system of equations Amidα = bmid for α.

Similarly, the midpoint matrix of interval matrix (5.3) is a point matrix
Xmid. Hence, we can perform a sequence of Householder transformation as
required by step 3 of Algorithm 2 to obtain a point upper triangular matrix
R. The sequence of Householder transformations can be applied directly to
the interval vector (y1,y2, . . . ,yN)T as in step 4 of Algorithm 2 to obtain an
interval vector z. In step 5 of Algorithm 2, we solve Rα = zmid to obtain an
approximation for the midpoint of the interval vector α.

We emphasize that the result of evaluating

y = f(x) ≈ α0 +
∑

1≤j≤m

αjϕj(x)

is an interval even if we use the midpoint of the interval vector α in the
calculation. This is because the independent variable x is interval-valued.
However, by collapsing an interval vector α to its midpoint, we may expect
that the initial approximation is an inner interval approximation.

5.3.3 Width Adjustment

Now let us consider ways to determine the width of y. There can be a number
of different computational heuristics. One of them is to perform ε-inflation, as
reported in Section 4.3 of Chapter 4, on the point-valued α. By maximizing
the estimation ratio of Aα = b in Algorithm 1 (or Rα = z in Algorithm 2),
we obtain an interval-valued α. Another approach is to estimate the width of
y and adjust the inner approximation directly by multiplying a scale factor.
For example, we can apply least squares approximation to estimate the width
of y. There are open questions that need to be further studied on optimal
width adjustment.

5.3.4 Interval Least Squares Approximation

Summarizing the above discussion, the main steps of an interval function least
squares approximation algorithm include the following:

1. Input available interval data pairs (xi,yi).
2. Use interval arithmetic to evaluate the normal equations or the design

matrix.
3. Find an initial approximation.
4. Modify the initial approximation with a width adjustment.

We apply these steps in the case studies in this chapter.

5 Interval Function Approximation and Applications 125

5.3.5 Other Approaches to Obtain an Interval Approximation

One may obtain an interval approximation without using interval arithmetic
at all. The lower and upper bounds of interval data pairs (xi,yi) form two
collections of point data (xi, yi

) and (xi, yi). By applying point least squares
approximation separately to these two collections, one can obtain two point
estimations. These two estimations form an interval. We call this approach
the min-max interval approximation. This has been reported and applied in
[6] and [7].

Another way to obtain an interval approximation is to apply classical sta-
tistical/probabilistic approaches. By adding to and subtracting from a point
approximation a certain percentage of standard deviations, one can obtain
forecasting intervals. In the literature, this is called a confidence interval.
However, our case studies imply that, at least in some cases, interval function
least squares approximation can produce better quality computational results
than that obtained with the min-max intervals and confidence intervals.

5.4 Assessing Interval Function Approximation

There are different ways to produce an interval function approximation. An
immediate question is how to assess the quality. We define two measurements, -
absolute error and accuracy ratio -, to assess an interval approximation defined
as follows.

Definition 3. Let yest be an approximation for the interval y. The absolute
error of the approximation is the absolute sum of the lower and upper bound
errors, that is,

|y
est
− y|+ |yest − y|.

Example 1. If one uses [−1.02, 1.95] to approximate the interval [−1.0, 2.0],
then the absolute error of the estimation is

|(−1.02)− (−1.0)|+ |1.95− 2.0| = 0.02 + 0.05 = 0.07.

Since both yest and y are intervals, an additional meaningful measure
of quality can be defined. The larger the overlap between the two intervals,
the better the approximation should be. By the same token, the less the
nonoverlap between the two intervals, the more accurate the forecast is. In
addition, the accuracy of an interval estimation should be between 0% and
100%. By using the notion of interval width, which is the difference between
the upper and lower bounds of an interval, we can measure the intersection
and the union (or the convex hull) of the two intervals. The function w()
returns the width of an interval. We define the concept, named the accuracy
ratio of an interval approximation, as follows.

126 Chenyi Hu, Ling T. He, and Shanying Xu

Definition 4. Let yest be an approximation for the interval y. The accuracy
ratio of the approximation is

w(y ∩ yest)
w(y ∪ yest)

if (y ∩ yest) 6= ∅

0 otherwise.

Example 2. Using [−1.02, 1.95] to approximate the interval [−1.0, 2.0], the ac-
curacy ratio is

w([−1.02, 1.95] ∩ [−1.0, 2.0])
w([−1.02, 1.95] ∪ [−1.0, 2.0])

=
w([−1.0, 1.95])
w([−1.02, 2.0])

=
2.95
3.02

= 97.68%.

As in classical statistics, one can calculate the mean, standard deviation
of a collection of interval estimations, as well as their absolute errors and
accuracy ratios. Furthermore, one may compare the overall quality of different
approximations.

5.5 Application 1: S & P 500 Index Interval Forecasting

The S & P 500 index is broadly used as a indicator for the overall stock market.
Driven by macroeconomic and social factors, the stock market usually varies
with time. The main challenge in studying the stock market is its volatility
and uncertainty. With interval least squares approximation for the S & P 500
annual interval forecast, we have obtained astonishing computational results
reported in [5] and [10] in addition to that reported in Section 4.5 of Chapter 4.

5.5.1 The Model

Arbitrage pricing theory (APT) [14] provides a framework that identifies
macroeconomic variables that significantly and systematically influence stock
prices. By modeling the relationship between the stock market and relevant
macroeconomic variables, one may forecast the overall level of the stock mar-
ket. The model established by Chen, Roll, and Ross [1] is broadly accepted.
According to their model, the changes in the overall stock market value
(SPt) are linearly determined by the following five macroeconomic factors:
the growth rate variations of seasonally adjusted Industrial Production In-
dex (IPt), changes in expected (DIt) and unexpected (UIt) inflation, default
risk premiums (DFt), and unexpected changes in interest rates (TMt). This
relationship can be expressed as

SPt = at + It(IPt) + Ut(UIt) + Dt(DIt) + Ft(DFt) + Tt(TMt).

By using historic data, one may estimate the coefficients of the above
equation to forecast changes of the overall stock market.

5 Interval Function Approximation and Applications 127

5.5.2 Time Series and Slicing-Window

Chronologically ordered historical data form a time series. There is a gen-
eral consensus in the financial literature that relationships between financial
market and macroeconomic variables are time-varying. This means that the
relationship is valid only for a limited time period. Therefore, in applying
function approximation on a time series, one should use only data inside an
appropriate time window to estimate the relationship.

Time series have been extensively studied for prediction and forecasting
[3] and [4]. In the literature, it is called an in-sample forecast if the coefficients
in a time window and the equation above are used to calculate the SP for the
last time period in the time window. It is called an out-of-sample forecast if
the coefficients in a time window and the equation above are used to calculate
the SP for the first time period that immediately follows the time-window
[2].

By slicing the time window (also called “rolling”), one obtains a sequence
of coefficients and forecasted SP values. The overall quality of forecasting can
be measured by comparing the forecasts against actual SP values. In practice,
the out-of-sample forecast is more useful than in-sample forecast because it
can make predictions.

5.5.3 The Data

To date, the primary measurements used in economics and finance are quan-
tified points. For instance, a monthly closing value of an index is used to
represent the index for that month, even though the index actually varies
during that month. The data used in this case study are monthly data from
January 1930 to December 2004. We list a portion of the data here.

Yr_mth UI DI SP IP DF TM

30-Jan -0.00897673 0 0.014382062 -0.003860512 0.0116 -0.0094

30-Feb -0.00671673 -0.0023 0.060760088 -0.015592832 -0.0057 0.0115

30-Mar -0.00834673 0.0016 0.037017628 -0.00788855 0.0055 0.0053

30-Apr 0.00295327 0.0005 0.061557893 -0.015966279 0.01 -0.0051

30-May -0.00744673 -0.0014 -0.061557893 -0.028707502 -0.0082 0.0118

30-Jun -0.00797673 0.0005 -0.106567965 -0.046763234 0.0059 0.0025

...

04-Jun 0.00312327 -0.0002 0.026818986 0.005903385 -0.0028 0.0115

04-Jul -0.00182673 0.0002 -0.024043354 0.00306212 0.0029 0.0147

04-Aug 0.00008127 0.0002 -0.015411102 -0.002424198 0 0.0385

04-Sep 0.00156327 0.0001 0.026033651 0.007217235 0.0005 0.0085

04-Oct 0.00470327 0 0.000368476 0.002001341 0.001 0.0143

04-Nov -0.00002273 0 0.044493038 0.006654848 0.0034 -0.0245

04-Dec -0.00461673 0.0004 0.025567309 0.001918659 0.0007 0.0235

In this case study, we use a time window of 10 years to obtain the out-of-
sample annual forecasts for 1940-2004.

128 Chenyi Hu, Ling T. He, and Shanying Xu

5.5.4 Interval Rolling Least Squares Forecasts

To perform interval rolling least squares forecasts, we need interval input data.
We choose the annual minimum and maximum for each of the attributes
of the provided monthly data to form the interval input data. We use the
normal equations to obtain an inner approximation and then adjust its width
to the average width of the S & P 500 intervals within the time-window.
Use the software toolbox reported in Chapter 10; we developed a program
that implemented interval function approximation algorithms discussed in this
chapter to perform stock market forecasts. Figure 5.2 illustrates the out-of-
sample annual interval forecasts.

Fig. 5.2. Out-of-sample least squares annual interval forecasts (1940-2004).

5.5.5 Min-Max Interval Forecasts

By applying point rolling OLS to the annual minimum and maximum, we
obtain two out-of-sample annual forecasts for the period of 1940-2004. They
form annual min-max interval forecasts. Figure 5.3 illustrates the min-max
interval forecasts. The time window is ten years, the same as that used in the
interval least squares forecast.

Out-of-Sample 10-Year Rolling Interval Forecasts

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

19
40

19
42

19
44

19
46

19
48

19
50

19
52

19
54

19
56

19
58

19
60

19
62

19
64

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

Year

C
he

ng
es

 in
 S

to
ck

 M
ar

ke
t

SP Lower Bound Predicted Loweer SP Upper Bound Predicted Upper

5 Interval Function Approximation and Applications 129

Fig. 5.3. Out-of-sample min-max annual interval forecasts (1940-2004).

5.5.6 Point and Confidence Interval Forecasts

For the purpose of quality comparison, we calculated the annual point fore-
casts that are commonly used in financial study. We obtained the out-of-
sample annual forecasts (in percent) for the period 1940-2004. The out-of-
sample annual point forecasts have an average absolute forecasting error of
20.6%, with a standard deviation of 0.19. By adding to and subtracting from
the point-forecasts with a proportion of the standard deviation, we may form
confidence interval forecasts with 95% statistical confidences. It is worth point-
ing out that the ranges of interval forecasts are significantly less than that of
point forecasts at the ratio of only about 14%.

5.5.7 Quality Comparisons

To assess the quality of the above forecasts, we use the following indicators: (1)
the average absolute error, (2) the standard deviation of forecast errors, (3)
the average accuracy ratio, and (4) the number of forecasts with 0% accuracy.
We summarize the statistics of the quality indicators in Table 5.1.

All measured indicators for forecasting quality in Table 5.1 suggest that
interval OLS significantly outperforms point-based forecasts with a much less

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
19

40
19

41
19

42
19

43
19

44
19

45
19

46
19

47
19

48
19

49
19

50
19

51
19

52
19

53
19

54
19

55
19

56
19

57
19

58
19

59
19

60
19

61
19

62
19

63
19

64
19

65
19

66
19

67
19

68
19

69
19

70
19

71
19

72
19

73
19

74
19

75
19

76
19

77
19

78
19

79
19

80
19

81
19

82
19

83
19

84
19

85
19

86
19

87
19

88
19

89
19

90
19

91
19

92
19

93
19

94
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04

Min-Max Out-of-Sample Rolling Forecasts

SP Lower bound SP Uppre bound Min-Max Lower bound Min-Max Upper bound

130 Chenyi Hu, Ling T. He, and Shanying Xu

-1

-0.5

0

0.5

1

1.5

2

19
40

19
42

19
44

19
46

19
48

19
50

19
52

19
54

19
56

19
58

19
60

19
62

19
64

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

SP Predict

Fig. 5.4. Out-of-sample annual point forecasts (1940-2004).

Absolute Standard Accuracy Zero
mean error deviation ratio accuracy

OLS 0.20572 0.18996 NA NA
Std dev., 95% confidence 0.72351 0.31197 0.1257 5
Min-Max interval 0.06664 0.04100 0.4617 0
Initial interval Fcast 0.07304 0.03815 0.3855 0
Interval Fcast 0.05166 0.03224 0.6419 0

Table 5.1. Quality Comparison of Annual Forecasts (1940-2004)

mean forecast error. The much smaller standard deviations produced by the
interval approaches indicate that the interval forecasting is more stable than
other comparing methods. Compared with the point-based confidence inter-
val forecasting, interval methods produce a much higher average accuracy
ratio. The interval scheme with width adjustments further improves the over-
all forecasting quality of initial approximations in terms of the higher average
accuracy ratio. All forecasts with interval computing have a positive accuracy
ratio, whereas some of the point-based confidence intervals have zero accuracy.
In the min-max approach, three predicted lower bounds were greater than the
computed upper bounds. We reordered them into proper intervals.

5 Interval Function Approximation and Applications 131

5.6 Application 2: Crude Oil Price Interval Forecasting

As a strategic resource, crude oil and its trade have attracted extensive at-
tention. Crude oil forecasting has been focused on the relationship between
commodity inventory levels and spot prices. Previous work has explained a re-
lationship between crude oil price and total inventories (crude plus products)
of the Organization for Economic Cooperation and Development (OECD)
countries. Since crude oil prices vary frequently within an interval during a
given month, we study them with interval forecasting.

5.6.1 The Model

In this study, we use the oil price forecasting model established by Ye, Zyren,
and Shore [16]. In that model, the observed level of petroleum inventory is
decomposed into two components: the normal level and the relative level.
The former is determined by historical seasonal movements and trends and
reflects the normal market demand and operational requirements. The later
represents the difference between the observed and normal levels and reflects
short-run market fluctuations.

Using INt and IN∗ to represent the actual and normal inventory levels at
time t, respectively, the relative inventory level (denoted by RIN) is defined
as

RINt = INt − IN∗
t .

The normal inventory level is modeled with

IN∗
t = a0 + b1T +

12∑
k=2

bkDk (5.4)

where Dk for k = 2, 3, . . . , 12 are 11 seasonal dummy variables and T is time,
beginning with 1. The coefficients a0 and bk for k = 1, 2, . . . , 12 need to be
determined.

In [16], Ye et al. claimed that the best specification found for the short-run
forecast of the monthly WTI spot price is the Relative Stock (RSTK) model

WTIt = a+

{
3∑

i=0

biRINt−i

}
+


5∑

j=0

cjDj911

+dLAPR99+eWTIt−1 +εt,

(5.5)
where a, bi, cj , d, and e are to be determined parameters, Dj911 is a set of
single monthly variables to account for market disequilibrium following the
September 11, 2001 terrorist attacks in the United States, and LAPR99 is a
level shifting variable corresponding to the effect that OPEC quota tightening
had on the petroleum market beginning in April 1999.

132 Chenyi Hu, Ling T. He, and Shanying Xu

5.6.2 The Data

The data used in this study are monthly averages of West Texas Intermediate
crude spot prices and the monthly OECD total inventory levels. They are
available from the website of the Energy Information Association (EIA). The
monthly average is commonly used in forecasting monthly oil prices. For ex-
ample, the EIA official website releases monthly data as the average of daily
prices in a single month. The WTI spot price is in nominal dollars per barrel,
and the inventory level is measured in millions of barrels. To compare with
the results reported by Ye et al. in [16] and [17], we study the same period as
theirs: from January 1992 to April 2003. The size of the rolling time window
is 96 months, the same as theirs. The crude oil spot prices fell and rose dra-
matically after September 11, 2001. By introducing six dummy variables, the
model does not forecast for the 6 months immediately after that event.

We form monthly price intervals by taking the minimum and the maximum
of daily prices in the month. The relative inventory level is calculated by
using above formula. Given the common sense that the inventories vary during
a month, we transform the relative level into interval data by adding and
subtracting a certain percentage. Through experiments, we set the percentage
to be around 40%, so that the interval least squares approximation produces
results comparable with that of 95% confidence interval forecasts.

5.6.3 Computational Results

To examine the quality of the forecasting intervals produced by interval least-
squares approximation, we compare them against the 95% confidence interval
forecasts based on the point forecasts in [16] and [17]. Table 5.2 lists the aver-
age accuracy and average error for both in-sample and out-of-sample forecasts
against the actual price intervals.

Average Average
absolute error accuracy ratio

In-sample
Interval Forecast 3.147 51.932%
95% conf. interval 3.163 53.239%

Out-of-Sample
Interval Forecast 3.511 48.557%
95% conf. interval 3.482 50.241

Table 5.2. Least Squares Forecasts vs. 95% Confidence Intervals

In terms of average absolute error and average accuracy ratio, the interval
least squares approximation provides only comparable interval forecasts with
95% confidence intervals.

5 Interval Function Approximation and Applications 133

In decision making, the monthly average price is a useful parameter.
Therefore, we examined if the monthly average fell within the monthly fore-
casted interval or not. We found that the interval least squares approximation
slightly outperformed 95% confidence intervals. Whereas 82.35% of the aver-
age monthly prices fell within the intervals produced by interval least-squares
approximation, only 79.41% fell within the 95% confidence intervals.

5.7 Conclusions

In this chapter, we apply interval functions to model uncertainty and volatility.
With interval-valued nodes, we may fit an interval function with least squares
approximation. The strategy proposed in this chapter is to first find an inner
approximation, and then to adjust the width with computational heuristics.
Although the interval function to be approximated is unknown, we can still
statistically assess the quality of an interval approximation.

We examined two case studies in this chapter. The first deals with annual
interval forecasts for the S & P 500 index from 1940 to 2004. Interval function
least squares approximation produced significantly better results than that
obtained with traditional point approaches in terms of overall less mean error
and higher average accuracy ratio. The other application deals with forecast-
ing monthly crude oil price intervals from January 2000 to April 2003. The
forecasting intervals obtained with the interval least squares approach are
comparable with that of 95% confidence intervals. Although these are initial
attempts at using interval methods in financial study, our computational re-
sults imply that interval functions and their least square approximation have
a good potential in studying volatile phenomena in general.

Acknowledgment: This work is partially supported by the U.S. National Sci-
ence Foundation under grants CISE/CCF-0202042 and CISE/CCF-0727798.

References

1. Chen, N.F., Roll, R., Ross, S.A.: Economic forces and the stock market. Journal
of Business 59(3), 383–403 (1986). http://ideas.repec.org/a/ucp/jnlbus/

v59y1986i3p383-403.html
2. Fama, E., French, K.: Industry costs of equity. Financial Economics 43, 153–193

(1997)
3. Gardner, E.: A simple method of computing prediction intervals for time series

forecasts. Management Science 34, 541–546 (1988)
4. Gooijer, J., Hyndman, R.: 25 years of time series forecasting. Forecasting 22,

443–473 (2006)
5. He, L., Hu, C.: The stock market forecasting: An application of the interval

measurement and computation. In: The 2nd International Conference on Fuzzy
Sets and Soft Computing in Economics and Finance, pp. 13–22, St. Petersburg
(2006)

http://ideas.repec.org/a/ucp/jnlbus/v59y1986i3p383-403.html
http://ideas.repec.org/a/ucp/jnlbus/v59y1986i3p383-403.html

134 Chenyi Hu, Ling T. He, and Shanying Xu

6. He, L., Hu, C.: Impacts of interval measurement on studies of economic variabil-
ity: evidence from stock market variability forecasting. Risk Finance 12, 489-507
(2007)

7. He, L., Hu, C.: Impacts of interval computing on stock market variability fore-
casting. Computational Economics (to appear)

8. Hu, C.: Using interval function approximation to estimate uncertainty. Springer
book series: Advances in Soft Computing, vol. 46, Interval / Probabilistic Un-
certainty and Non-Classical Logics, 341–352, (2008)

9. Hu, C., Cardenas, A., Hoogendoorn, S., Selpulveda, P.: An interval polynomial
interpolation problem and its Lagrange solution. Reliable Computing 4(1), 27–
38 (1998)

10. Hu, C., He, L.: An application of interval methods to the stock market forecast-
ing. Reliable Computing 13, 423-434 (2007)

11. Moler, C.B.: Numerical Computing with MATLAB. Society for Industrial and
Applied Mathematics, Philadelphia (2004)

12. Moore, R.E.: Methods and Applications of Interval Analysis. Society for Indus-
trial and Applied Mathematics, Philadelphia (1979)

13. Neumaier, A.: Interval Methods for Systems of Equations, Encyclopedia of
Mathematics and its Applications, Vol. 37. Cambridge University Press, Cam-
bridge (1990)

14. Ross, S.: The arbitrage theory of capital asset pricing. Economic Theory 13,
341–360 (1976)

15. Xu, S., Chen, X., Ai, H.: Interval forecasting of crude oil price. Springer book
series: Advances in Soft Computing, vol. 46, Interval/Probabilistic Uncertainty
and Non-Classical Logics, 353-363 (2008)

16. Ye, M., Zyren, J., Shore, J.: A monthly crude oil spot price forecasting model
using relative inventories. Forecasting 21, 491–501 (2005)

17. Ye, M., Zyren, J., Shore, J.: Forecasting short-run crude oil price using high and
low-inventory variables. Energy Policy 34, 2736–2743 (2006)

6

Interval Rule Matrices for Decision Making

Chenyi Hu

Department of Computer Science, University of Central Arkansas, 201 Donaghey
Avenue, Conway, AR 72035-0001, USA. chu@uca.edu

In this chapter, we present a decision-making system using an interval rule
matrix. Section 6.2 introduces the rule matrix model. Section 6.3 reports prac-
tical algorithms that establish an interval rule matrix. Section 6.4 describes
how to use an interval rule matrix to make decisions according to environ-
mental observations.

6.1 Introduction

Every day, numerous decisions are made for various reasons. Although many
of these decisions are astute enough and return results as expected, there
are others that can be made better to avoid unwanted consequences. How to
make a good, a better, or even the best decision is a practical question asked
frequently.

A decision problem usually consists of a set of possible states of nature
(environment), a set of possible actions (decisions), and a benefit function
that measures the results of a decision in a given environment. To make a
right decision, one certainly needs to know the current environment and re-
lated knowledge. Through matching input data (relevance of each environment
feature) with a certain set of rules, one may make a decision accordingly. How-
ever, due to uncertainty and incomplete information, the best one can do is to
estimate the benefit for a decision. Usually, the actual best decision can only
be known afterward. Therefore, historical data are often useful for people to
discover rules for decision making.

As the world becomes more complex, the number of features involved in
decision making can be unmanageable for human beings. Modern comput-
ers collect massive datasets and perform trillions of calculations in seconds.
Nowadays, knowledge-based agents are designed, implemented, and embed-
ded into computers as automated decision-making systems. These systems
apply decision theories and algorithms to generate rules based on statisti-
cal/probabilistic, stochastic, fuzzy systems [5, 11, 12, 15], neuro-fuzzy systems

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 6, c© Springer-Verlag London Limited 2008

chu@uca.edu

136 Chenyi Hu

[9], and so on. In this chapter, we specifically study an interval rule matrix
model for automated decision making and reasoning about possible courses
of actions based on an environmental observation.

6.2 The Rule Matrix Model

6.2.1 A Simple Example

Decisions are mostly made according to observations of the current environ-
ment and existing knowledge. Here is a simple example.

Example 1. Bob needs to decide if he should carry his umbrella and coat before
leaving home for work. He may carry (a) both his umbrella and coat, (b) his
umbrella but not his coat, (c) his coat but not an umbrella, and (d) neither.
Unfortunately, he has no way to check the forecasts and must make a quick
decision by observing the current weather conditions. Based on his knowledge,
Bob uses the following table to make his decision.

Environment/decision a b c d
Rain or very likely Yes Yes No No
Current temperature Below 40oF Above 40oF Below 40oF Above 40oF

The first row of the table lists all possible decisions for Bob and the first
column lists environmental parameters that Bob takes into consideration for
decision making. By matching the environmental observations with the table,
Bob can easily make his decision.

6.2.2 Rule Matrices

In general, an environment e may contain m features, and there can be n
possible different decisions, d1, d2, . . . , dn, that could be made based on the
presence of the environment features. Let e = (e1, e2, . . . , em)T be an observa-
tion of the environment; that is, e denotes the degree to which certain features
of an environment are present. Then a knowledge-based agent may select a
specific decision by matching the input e with column vectors of the m by n
matrix P :

P =


p11 p12 · · · p1n

p21 p22 · · · p2n

...
pm1 pm2 · · · pmn

 .

If an observation vector e matches Pj , (i. e., the j-th column of P), then
the jth decision dj should be selected. A benefit function can be associated
with the decision as well. We call P a rule matrix for the decision-making
process, and the model is called a rule matrix model.

6 Interval Rule Matrices for Decision Making 137

In practice, a rule matrix should be interval-valued, as suggested by de
Korvin, Hu, and Chen in [4]. This is mainly because of the following two rea-
sons. The first one is that a decision is usually selected according to ranges
of attribute values rather than matching a point exactly. In addition, an en-
vironment observation often imprecise. A rule matrix generated from such
imperfect data should allow an error bounds. By specifying the lower and up-
per bounds of feature presence in an interval rule matrix, we take uncertainty
into consideration appropriately [3, 4, 14].

We denote an interval rule matrix by the boldface uppercase letter P
whose entry pij is an interval for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. By the same
token, an environment observation is also interval-valued and is denoted by
boldface as e.

6.2.3 Another Example

For a more sophisticated example, we describe an interval rule matrix to
enhance network intrusion detection systems (IDSs). In addition to user au-
thentication, cryptography, and firewalls, IDSs are embedded into network
management systems to monitor network states and perform control func-
tions.

Two main types of intrusion detection approach are misuse detection [8]
and anomaly detection [13]. Anomaly detection compares activities with es-
tablished normal usage patterns (profiles) and determines if the network state
deviates over some threshold from normal patterns. This approach is recog-
nized as being capable of catching new attacks. However, normal patterns of
usage and system behaviors can vary wildly. Therefore, anomaly detection
usually produces a very large number of false alarms, see [2] and [10] and
hence is impractical. By representing normal patterns in an interval-valued
matrix, we should be able to reduce false alarms caused by a small change in
normal behavior or a slight deviation from a pattern derived from the network
audit data.

To generate an interval rule matrix for intrusion detection, we may assume
the availability of previous network state data and intrusions associated with
them. These can be automatically collected by network monitoring software.
If we consider m features and n possible interval-valued network states, then
we have an m × n interval rule matrix. We represent the likelihood of an
intrusion with 0 (certainly not) and 1 (absolutely yes). Then the likelihood of
an intrusion can be represented as a mapping from the network state to the
interval [0, 1].

To simplify the example, in [6], Duan, Hu, and Wei considered only three
network state attributes: the average packet delay for a Transmission Con-
trol Protocol (TCP) flow, the bandwidth utilized for the TCP flow, and the
number of TCP flows arriving at one router ingress port (shown as the first,
second, and the third rows of the following matrix, respectively). An artificial
interval matrix for the network state can be as follows:

138 Chenyi Hu

 [0.8, 1.8] [1.6, 2.1] [2.2, 3.1]
[3.5, 5.2] [4.8, 6.5] [6.9, 7.4]
[8, 10] [9, 12] [13, 16]

 .

By counting intrusions associated with each of these states, we can obtain
an empirical probability of intrusions dj associated with the j-th column. For
a current network state observation e, we can estimate the likelihood of a
intrusion (or intrusions) as follows:

• Input: Current network state e.
• Estimation: Compare e and column vectors of P .

Case 1: If e ⊆ P j , the likelihood of an intrusion is dj .
Case 2: If ∀j ∈ {1, 2, . . . , n}, e ∩ P j = ∅, then the network state is very

abnormal when compared to historical states. An intrusion alarm should
be sent to the network administrator.
Case 3: If e ∩ P j 6= ∅ for more than one j ∈ {1, 2, . . . , n}, then one may

select the greatest dj or use other heuristics.

By using the empirical probability and cost function, the system can es-
timate the expected average damage for a possible intrusion. In [6], Duan,
Hu, and Wei further suggested that the interval rule matrix model could be
integrated with data collection, policy generation, and policy application. Ac-
cording to the current likelihood of network intrusion, network control can
then identify risk levels and automatically take actions.

The example constructed earlier shows the potential of interval rule matrix
in various kinds of application. In the rest of this chapter, we discuss ways to
establish an interval rule matrix and to how apply it to decision making.

6.3 Establishing an Interval-Valued Rule Matrix

The main purpose of this section is to design practical algorithms that con-
struct an interval rule matrix P from a known dataset E. We assume that
E contains N environment-decision pairs. Because we have used ek to indi-
cate the kth feature of an environment, we use a superscript ek to denote the
kth observation of the environment. By the term environment-decision pair
[ek, dk∗] ∈ E, we mean that under a given environment ek, 1 ≤ k ≤ N , the
desired decision should be dk∗ for a particular k∗ with 1 ≤ k∗ ≤ n.

A naive way to determine the jth column of P , Pj , is to let Pj = ek if
j = k∗. This certainly ensures that the jth decision will be selected if the
environment is ek. However, this will not work appropriately, since the same
decision dj may be taken for different environment observations. In fact, n
is usually much less than N . By using an interval rule matrix like the one
constructed in the previous section, one may come to the same decision even
with different values of environment observations.

6 Interval Rule Matrices for Decision Making 139

6.3.1 A Straightforward Approach

Our objective is to extract an interval-valued rule matrix P = {pij}m×n =
{[p

ij
, pij]}m×n from a dataset E = {(ek, dk∗)|1 ≤ k ≤ N} without any previ-

ous knowledge except the training dataset itself. A straightforward approach
would be as follows.

For any given j ∈ {1, 2, . . . , n}, we find an interval vector P j such that
∀k ∈ {1, 2, . . . , N}, ek ⊂ P j if dk∗ = j. It is ideal if P j ∩ P k = ∅ whenever
j 6= k. Then these mutually exclusive n column interval vectors form an
interval rule matrix that fits the training dataset. In the following example,
we presorted the training dataset according to the decisions. By taking a
hull for each feature corresponding to the same decisions, we easily obtain an
interval rule matrix.

Example 2. An environment consists of three features, and there are three
possible decisions: a, b, and c. Construct an interval rule matrix from the
following collection of desired environment-decision pairs:

([0.8, 1.1] [1.1, 1.2] [0.8, 1.7], a);
([0.7, 0.9] [1.3, 1.4] [0.9, 1.1], a);
([0.8, 1.0] [1.3, 1.5] [1.0, 1.8], a);
([0.7, 0.9] [1.2, 1.4] [0.9, 1.0], a);
([0.8, 0.9] [1.2, 1.4] [0.9, 1.0], a).
([0.1, 0.4] [2.0, 2.1] [0.2, 0.5], b);
([0.2, 0.3] [2.0, 2.3] [0.2, 0.4], b);
([0.1, 0.4] [2.0, 2.1] [0.2, 0.5], b);
([0.3, 0.4] [2.1, 2.2] [0.3, 0.4], b);
([0.0, 0.2] [2.2, 2.5] [0.4, 0.5], b);
([1.5, 3.3] [0.7, 0.9] [5.8, 6.5], c);
([1.6, 3.0] [0.7, 1.0] [4.8, 5.0], c);
([2.0, 3.2] [0.9, 1.0] [5.1, 6.3], c);
([3.2, 4.0] [0.4, 1.0] [6.2, 6.4], c);
([1.5, 4.0] [0.5, 1.0] [4.8, 6.0], c);

Let us consider the interval vector P a first. The first element of the interval
vector P a should contain the intervals [0.8, 1.1], [0.7, 0.9], [0.8, 1.0], [0.7,
0.9], and [0.8, 0.9]. Hence, the union of these five intervals, [0.7, 1.1], works.
Similarly, we get the second and the third elements of P a as [1.1, 1.5] and
[0.8, 1.8]. Therefore,

P a =

 [0.7, 1.1]
[1.1, 1.5]
[0.8, 1.8]

 .

We can find P b and P c similarly and then construct an interval rule matrix
as

140 Chenyi Hu  [0.7, 1.1] [0.0, 0.4] [1.5, 4.0]
[1.1, 1.5] [2.0, 2.5] [0.4, 1.0]
[0.8, 1.8] [0.2, 0.5] [4.8, 6.5]


From the above example we can see that the rule matrix can be up-

dated easily. Whenever a new environment-decision pair becomes available, a
union operation on interval vectors takes care of the updating. Let ([0.9, 1.7],
[1.2, 1.6], [1.0, 1.5]; a) be a newly available pair. Then the first column of the
above rule matrix can be adjusted as [0.7, 1.1]

[1.1, 1.5]
[0.8, 1.8]

 ∪
 [0.9, 1.7]

[1.2, 1.6]
[1.0, 1.5]

 =

 [0.7, 1.7]
[1.1, 1.6]
[0.8, 1.8]

 .

This updating scheme also suggests a way to construct an interval rule matrix
starting from an empty rule matrix (i.e., from an initial rule matrix in which
every element is an empty interval).

Let us write the straightforward approach as an algorithm that con-
structs an m × n interval rule matrix with a known dataset that contains
N environment-decision pairs.

Algorithm 3 (Straightforward construction of an interval rule matrix)

• Initialize an empty m×n rule matrix P such that pij = ∅, ∀i = 1, 2, . . . ,m
and j = 1, 2, . . . , n.

• For each environment-decision pair (ek, dk∗), where k ∈ {1, 2, . . . , N} and
k∗ ∈ {1, 2, . . . , n}, update the rule matrix as follows:

pik∗ ← hull(pik∗ , e
k
i) for i = 1, 2, . . . ,m

where
hull([x, x], [y, y]) = [min{x, y},max{x, y}]

is the smallest interval containing both x = [x, x] and y = [y, y].

For each environment-decision pair, one column of the rule matrix needs to
be updated. Therefore, Algorithm 3 isO(mN). As we can see in this algorithm,
it is unnecessary to presort a training dataset.

The straightforward approach is simple enough, with a relatively low com-
putational cost. However, it may not always result in mutually exclusive
columns. We say that an interval rule matrix is “fat” if two or more columns
have a nonempty intersection. For example, let us assume that a new data
item ([0.3, 0.8][1.4, 2.1][0.4, 0.9]; b) becomes available for updating the above
rule matrix. It would result in the second column of the rule matrix being [0.0, 0.4]

[2.0, 2.5]
[0.2, 0.5]

 ∪
 [0.3, 0.8]

[1.4, 2.1]
[0.4, 0.9]

 =

 [0.0, 0.8]
[1.4, 2.5]
[0.2 0.9]

 .

6 Interval Rule Matrices for Decision Making 141

The intersection of the updated column with the original first column is
nonempty since [0.7, 1.7]

[1.1, 1.6]
[0.8, 1.5]

 ∩
 [0.0, 0.8]

[1.4, 2.5]
[0.2 0.9]

 =

 [0.7, 0.8]
[1.4, 1.6]
[0.8 0.9]

 6= ∅.
If an observation falls into the intersection, say

e =

 [0.72, 0.75]
[1.4, 1.5]

[0.83 0.89]

 ,

then it is unclear whether one should select a or b as the decision. For this
reason, we need to study more sophisticated algorithms.

6.3.2 A Divide-and-Conquer Approach

We now present an alternative approach, with the divide-and-conquer ap-
proach, to establish an interval rule matrix P from a given training dataset.
In real applications, observed environment features at a particular time are
mostly thin intervals. Instead of starting with decisions as in the straightfor-
ward approach, let us begin with the consideration of feature parameters.

To avoid “fat” interval rule matrices, we first subdivide the range of each
feature parameter into narrow subintervals. Then by picking subintervals from
each of the m-features, we construct an m-dimensional tube (interval vectors
whose component intervals are narrow). Thus, if the interval for the i-th fea-
ture is subdivided into ji subintervals for each i, 1 ≤ i ≤ m, the total number
of tubes will be

∏m
i=1 ji.

For each environment-decision pair in the training dataset, we try to fit
the pair with one or more tubes according to its environment value. If a
pair can be put inside a tube completely, we increment the frequency of the
decision(s) associated with the tube. If the environment of a pair covers several
adjacent tubes, we increment the frequency of the decision for each tube that
the environment covers. After doing so for all pairs in E, we have a decision
frequency list associated with each tube. (Some of the frequencies can be zero.)
If these tubes are narrow enough, then each of them may contain only a single
decision, say dj .

In the conquer stage, we select one of the tubes with the highest frequency
for dj as the base for P j , the j-th column of the rule matrix. Adjacent tubes
associated with the same decision dj can then be combined to form the j-th
column of the rule matrix. On the other hand, if a tube contains different
decisions, it can be subdivided further. Of course, the frequency should be
recounted in the latter case.

The conquer stage not only consists of combining those adjacent tubes
associated with the same decision but also of dealing with tubes that are not

142 Chenyi Hu

associated with any decisions at all. In addition, a decision may be associated
with nonadjacent columns. Those tubes that are not associated with any de-
cisions we call empty tubes. These empty tubes can be either removed or kept
inactive for possible future use. (Using a predetermined frequency threshold,
one may computationally filter out statistically insignificant tubes as empty.)

A decision may be associated with multiple disconnected tubes (i.e., the
tubes do not share a common boundary). (Geometrically, there are other tubes
between tubes associated with the same decision.) A separation of two disjoint
tubes with the same decision is removable if the tubes in between are empty.
By taking a hull, one may remove such removable separations.

However, there are nonremovable separations, which means that there ex-
ists a tube between them but associated with another decision. In such a case,
we have to associate the decision with multiple columns. However, this will
cause a contradiction with the assumption that the rule matrix has only n
columns. To resolve this, we can use multiple rule matrices, such that each
rule matrix is on a separate “page.” In this way, the rule matrix is no longer
a two-dimensional array. The column of a rule matrix can be viewed as a
pointer that points to multiple interval vectors on different pages. Obviously,
the number of pages should be the same as the maximum number of disjoint
tubes that are associated with a single decision.

Let us summarize the above idea in an algorithmic format.

Algorithm 4 (Divide and conquer scheme to construct an interval rule ma-
trix)

1. Divide
a) Initialization: Subdivide each domain of the m-features into a prede-

termined number of subintervals to form a set of tubes T . For each
t ∈ T , associate a frequency zero with it for each possible decision.

b) For each (ek, d∗k) ∈ E, if ek ∩ t 6= ∅ for some t ∈ T and there are no
decisions other than d∗k associated with t, add 1 to the frequency count
of d∗k on t. Otherwise, if there are decisions other than d∗k associated
with t, then subdivide t for decision separation.

2. Conquer
a) For those tubes with the same decision, combine them if they are ad-

jacent or the separations are removable.
b) Form the j-th column of the rule matrix with the tube associated with

the decision dj. Note: There can be multiple separated columns asso-
ciated with the same decision dj.

Notice that the frequency count can be used as an indicator for the strength
of a rule. By ignoring very low frequencies, it can be used to avoid tube
refinements that are too detailed. To control the output rule matrix with
Algorithm 4, one may apply (a) a predefined tube size, (b) a frequency cutoff,
and (c) multiple pages. By associating a decision with disconnected columns

6 Interval Rule Matrices for Decision Making 143

on multiple pages, the “fat” rule matrix problem in Algorithm 3 may be
eliminated.

The computational complexity of Algorithm 4 can be much higher than
that of Algorithm 3. For an m-feature environment, if one performs s sub-
divisions for each feature, then T consists of sm tubes. Each matching re-
quires m log s comparisons with binary searching. Even without the tube re-
finement, the algorithm requires O(Nm log s) comparisons. With the refine-
ment, say performing up to h bisections for each feature, the complexity will
be O(Nmhm log s). In real applications, the number of features of a complex
environment can be very large.

A reasonable approach to make Algorithm 4 more practical is to con-
trol the number of features under consideration. Feature selection itself is a
computational decision-making problem [7]. To control the number of fea-
tures, one may rank features according to their correlations with respect to
decisions. By selecting subsets of features based on reliably assessing the sta-
tistical significance of the relevance of features to a given predictor, one may
build more compact feature subsets. Also, applying a singular value decom-
position (SVD), one can form a set of features that are linear combinations
of the original variables, which provide the best possible reconstruction of the
original data in the least squares sense.

In practice, instead of using all of the data in a training dataset to select
features, one may first sample the training dataset with Algorithm 4 to form
an initial rule matrix. With the initial rule matrix, features can then be se-
lected. Applying Algorithm 4 with these selected features, one can adaptively
update the rule matrix. Hopefully, these selected features are good enough for
most data, and only a few environment-decision pairs need to have more fea-
tures than those in the selected sample when updating the rule matrix. Some
heuristics such as sample selection, feature granularity, and cutoff threshold
are needed in applications.

The above practical approach also has other advantages. It allows one to
make a decision with the current rule matrix without completing the training.
The correctness of the decision selected can be used as a feedback to adjust
the rule matrix. We call this capability the ability to do “online” dynamical
training. The selected features can also be updated adaptively. Rules and
significance of a feature for decision making can be changed from time to
time. An adaptive approach can update them as well. Also, we should point
out that domain knowledge can and should play a very significant role in rule
matrix generation and feature selection.

6.4 Decision Making with an Interval Rule Matrix

The purpose of establishing an interval rule matrix is to apply it to making
decisions. Since a multipage rule matrix can be processed page by page, we
consider only single-page interval rule matrices here.

144 Chenyi Hu

Making a decision based on an environment observation e according to
an interval rule matrix requires to determine a j such that e “matches” the
j-th column of the rule matrix. By the word “match”, we mean that the two
interval vectors should somehow be “close.” To determine the closeness of two
interval vectors, we first need to define the distance between two intervals.

Definition 1. Let a and b be two intervals. The distance between a and b is
defined as

dist(a, b) =


0 if a ⊆ b or b ⊆ a

min{|a− b|+ 1; ∀a ∈ a, b ∈ b} if a ∩ b = ∅

1− w(a ∩ b)
min{w(a), w(b)}

otherwise.

The above definition implies the following properties:

1. The distance is reflexive: The distance from an interval a to another in-
terval b is the same as from b to a.

2. The distance between two intervals is zero if one is a subset of the other.
3. The minimum distance between two disjoint intervals is greater than or

equal to 1.
4. The distance between two partially overlapped intervals is between 0 and

1.
5. The distance between two disjoint intervals is in fact the same as

|m(a)−m(b)| − w(a) + w(b)
2

+ 1,

where m() and w() are midpoint and width functions, respectively.

The proof is straightforward.
Note that Definition 1 is appropriate for knowledge processing, but it

differs from other commonly used measures of distance, such as the Hausdorff
distance [1, p. 11], used within the interval mathematics community.

Applying the concept of distance between intervals, we can define the
distance between two interval vectors as follows.

Definition 2. Let x = (x1,x2, . . . ,xm) and y = (y1,y2, . . . ,ym) be two m-
dimensional interval vectors. Then the l-distance between x and y is defined
as

distl(x,y) =

 ∑
1≤i≤m

distl(xi,yi)

 1
l

.

By computing a distance, say l = 1 or l = ∞, between an environment
observation vector e and each column of an interval rule matrix P , one can
then make a decision accordingly. It seems reasonable to select the dj such that
dist(e,P j) = min1≤i≤n dist(e,P i), where P i is the i-th column of P . This is

6 Interval Rule Matrices for Decision Making 145

because the distance between e and P i is viewed as the strength indicator of
the i-th decision. The smaller the distance is, the stronger the decision should
be. In other words, the larger the distance is, the less the decision should
be selected. Zero distance indicates the strongest match between two interval
vectors.

It is possible that an observation vector may have the same (or almost
equal) minimum distance to multiple columns of the rule matrix. This can
happen even when the observation vector is a thin interval vector. To make a
reasonable decision from multiple best matches, instead of a random pick, we
define the expected value of a decision as follows.

Definition 3. Let ρj and vj be the probability and the benefit value of a de-
cision j, respectively. Then, the expected value of the decision j is defined as
expj = ρjvj.

In constructing an interval rule matrix from a training dataset, the de-
cision frequencies have been recorded. They can be considered as empirical
probabilities for each of the decisions. Also, historical data can provide the
average return on a decision. Therefore, one may select the decision with the
highest expected values among the multimatched columns.

Instead of applying the concept of interval distance, an earlier alternative
approach is to select a decision based on an interval rule matrix with fuzzy
logic and values of possibility and necessity functions. Readers may refer to
[4] and Chapter 2 of this book for more information.

6.5 Conclusions

We have studied an interval rule matrix model for establishing decision-
making systems. Using a training dataset consisting of environment-decision
pairs, we have proposed two algorithms to generate an interval rule matrix.
The straightforward approach has a time complexity of O(mN). The divide-
and-conquer approach may use adaptive modification, “online” training, and
feature selection for more practicality.

With an interval rule matrix, making a decision for an environment ob-
servation becomes finding the minimum distance between interval vectors.
Interval rule matrices have potential applications in rule-based automated
decision-making systems.

Acknowledgment: This work is partially supported by the U.S. National Sci-
ence Foundation under grants CISE/CCF-0202042 and CISE/CCF-0727798.

146 Chenyi Hu

References

1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic
Press Inc., New York (1983). Translation by J. Rokne from the original German
“Einführung In Die Intervallrechnung”

2. Bace, R., Mell, P.: NIST special publication on intrusion detection system. Tech-
nical report, NIST (National Institute of Standards and Technology) (2001).
http://csrc.nist.gov/publications/nistpubs/800-31/sp800-31.pdf.

3. Berleant, D., Cheong, M.P., Chu, C.C.N., Guan, Y., Kamal, A., Sheble, G., Fer-
son, S., Peters, J.F.: Dependable handling of uncertainty. Reliable Computing
9(6), 407–418 (2003)

4. de Korvin, A., Hu, C., Chen, P.: Generating and applying rules for interval
valued fuzzy observations. In: Z.R. Yang, R.M. Everson, H. Yin (eds.) Intelligent
Data Engineering and Automated Learning, Lecture Notes in Computer Science,
Vol. 3177, pp. 279–284. Springer-Verlag, Heidelberg (2004)

5. de Korvin, A., Hu, C., Sirisaengtaksin, O.: On firing rules of fuzzy sets of type
II. Applied Mathematics 3, 151-159 (2000)

6. Duan, Q., Hu, C., Wei, H.C.: Enhancing network intrusion detection systems
with interval methods. In: Proceedings of the ACM Symposium on Applied
Computing, pp. 1444–1448 (2005)

7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J.
Machine Learning Research 3, 1157–1182 (2003)

8. Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analysis: A rule-based
intrusion detection approach. Software Engineering 21(3), 181–199 (1995)

9. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man, and Cybernetics 23, 665–684 (1993)

10. Julisch, K.: Clustering intrusion detection alarms to support root cause analysis.
ACM Transactions on Information and System Securroty 6(4), 443–471 (2003)

11. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New
Directions. Prentice-Hall, Upper Saddle River, NJ (2001)

12. Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets and Systems 17, 99–102 (1985)
13. Seleznyov, A., Puuronen, S.: Anomaly intrusion detection systems: Handling

temporal relations between events. In: Proceedings of Recent Advances in In-
trusion Detection, West Lafayette, IN (1999). http://www.raid-symposium.

org/raid99/PAPERS/Seleznyov.pdf

14. Shary, S.P.: A new technique in systems analysis under interval uncertainty and
ambiguity. Reliable Computing 8(5), 321–418 (2002)

15. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems
and decision processes. IEEE Transactions on Systems, Man, and Cybernetics
SMC-3, 28–44 (1973)

http://csrc.nist.gov/publications/nistpubs/800-31/sp800-31.pdf
http://www.raid-symposium.org/raid99/PAPERS/Seleznyov.pdf
http://www.raid-symposium.org/raid99/PAPERS/Seleznyov.pdf

7

Interval Matrix Games

W. Dwayne Collins1 and Chenyi Hu2

1 Department of Mathematics and Computer Science, Hendrix College, 1600
Washington Avenue, Conway, AR 72032, USA. collins@hendrix.edu

2 Department of Computer Science, University of Central Arkansas, 201 Donaghey
Avenue, Conway, AR 72035-0001, USA. chu@uca.edu

Matrix games have been widely used in decision-making systems. In practice,
for the same strategies players take, the corresponding payoffs may be within
certain ranges rather than exact values. To model such uncertainty in matrix
games, we consider interval-valued game matrices in this chapter and extend
the results of classical strictly determined matrix games to fuzzily determined
interval matrix games. Finally, we give an initial investigation into mixed
strategies for such games. We reported this work initially at the Forging New
Frontiers at the University of California, Berkeley in November 2005. The full
paper [2] then appeared in Springer’s journal Soft Computing in 2008.

7.1 Introduction

7.1.1 Matrix Games

Game theory had its beginnings in the 1920s and significantly advanced at
Princeton University through the work of John Nash [3, 7, 8, 10]. The simplest
game is a zero-sum game involving only two players. An m × n matrix G =
{gij}m×n may be used to model such a two-person zero-sum game. If the row
player R uses his i-th strategy (row) and the column player C selects her j-th
choice (column), then R wins (and subsequently C loses) the amount gij . The
objective of R is to maximize his gain while C tries to minimize her loss.

Example 1. A game is described by the matrix

G =

 0 6 −2 −4
5 2 1 3
−8 −1 0 20

 . (7.1)

In the above game, the players R and C have three and four possible strategies,
respectively. If R chooses his first strategy and C chooses her second, then R

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 7, c© Springer-Verlag London Limited 2008

collins@hendrix.edu
chu@uca.edu

148 W. Dwayne Collins and Chenyi Hu

wins g12 = 6 (C loses 6). If R chooses his third strategy and C chooses her
first, then R wins g31 = −8 (R loses 8, C wins 8). In this chapter we restrict
our attention to such two-person zero-sum games.

7.1.2 Strictly Determined Matrix Games

If there exists a gij in a classical m × n game matrix G such that gij is
simultaneously the minimum value of the i-th row and the maximum value
of the j-th column of G, then gij is called a saddle value of the game. If a
matrix game has a saddle value, it is said to be strictly determined. It is well
known, [3] and [10], that the optimal strategies for both R and C in a strictly
determined game are as follows:

• R should choose any row containing a saddle value.
• C should choose any column containing a saddle value.

A saddle value is also called the value of the (strictly determined) game.
In the above example, g23 is simultaneously the minimum of the second row
and the maximum of the third column. Hence, the game is strictly determined
and its value is g23 = 1. The knowledge of an opponent’s move provides no
advantage since the optimal strategies for both players will always result in a
saddle value as the payoff in a strictly determined game.

7.1.3 Motivation for This Work

Matrix games have many useful applications, especially in decision-making
systems. However, in real-world applications, due to certain forms of uncer-
tainty, outcomes of a matrix game may not be a fixed number, even though the
players do not change their strategies. Hence, fuzzy games have been studied
[4, 9, 11]. By noticing the fact that the payoffs may only vary within a desig-
nated range for fixed strategies, we propose using an interval-valued matrix,
whose entries are closed intervals, to model this kind of uncertainty.

In this chapter, as throughout this book, we use boldface letters to denote
(closed and bounded) intervals. For example, x is an interval. Its greatest lower
bound and the least upper bound are denoted by x and x, respectively. We
use uppercase letters to denote general matrices. Boldface uppercase letters
will represent a interval-valued matrices.

Throughout this chapter, we assume that the intervals in the game matrix
G are closed and bounded intervals of real numbers and, for this investigation,
represent uniformly distributed possible payoffs.

Definition 1. Let G = {gij} be an m×n interval-valued matrix. The matrix
G defines a zero-sum interval matrix game provided whenever the row player
R uses his i-th strategy and the column player C selects her j-th strategy, then
R wins and C correspondingly loses a common x ∈ gij.

7 Interval Matrix Games 149

Example 2. Consider the following interval game matrix:

G =

 [0, 1] [6, 7] [−2, 0] [−4,−2]
[5, 6] [2, 7] [1, 3] [3, 3]

[−8,−5] [−1, 0] [0, 0] [20, 25]

 (7.2)

In this game, if R chooses row one and C selects column two, then R wins an
amount x ∈ [6, 7]. (C loses the same x that R wins.)

In this chapter, we extend results of classical matrix games to interval-
valued games. To accomplish this, we need to define fuzzy relational operators
for intervals in order to compare every pair of possible interval payoffs from a
rational game-play perspective. These relational operators for intervals will be
developed in Section 7.2. We then study crisply determined and fuzzily deter-
mined interval games in Sections 7.3 and 7.4. Since not all interval games are
determined, we begin an investigation of mixed strategies for non-determined
games. We describe a potential mapping of such an interval game into an
interval linear programming problem in Section 7.5, and we show how lin-
ear interval inequalities can be solved under our definition in Section 7.6. We
summarize these results in Section 7.7.

7.2 Comparing Intervals

To compare strategies and payoffs for an interval game matrix, we need a
notion of an interval ordering relation that corresponds to the intuitive notion
of a “better possible” outcome or payoff. This will be done by defining the
notion of a nonempty interval x not being a better payoff than a nonempty
interval y (i.e., the notion that x is less than or equal to y). Other approaches
that define such relational orderings between some pairs of intervals have been
developed and extended. In [5], Fishburn defined a concept of interval order
corresponding to a special kind of partially ordered set. His context is for the
study of the order of vertices in interval graphs. An interval graph refers to a
graph (X,∼) whose points can be mapped into intervals of a linearly ordered
set such that, for all distinct x and y, x ∼ y if and only if the intervals assigned
to x and y have a nonempty intersection. Allen’s [1] in 1983 listed 13 possible
cases for the temporal relationships between two time intervals. However,
neither of these two developments compares general intervals or models such
a comparison in our game-theoretic context. Unlike these models, we wish to
make every pair of our intervals comparable and to fuzzily quantify the notion
of “indifference” in our game-theoretic context except when the two intervals
are equal.

For the development of our relational operators in our context, we assume
that a rational player will not prefer an interval x as in Figure 7.1, Case 1, to
interval y, as every possible payoff value x ∈ x is less than every payoff value
y ∈ y. Similarly, we assume that in the case of the intervals in Figure 7.1,

150 W. Dwayne Collins and Chenyi Hu

Fig. 7.1. Nonoverlapping and overlapping intervals.

Case 2, the player will not prefer interval x over y, since no value in x offers
a payoff that is greater than what is possible in y, and y offers no payoff that
is less than what is possible in x. Thus, choosing interval y over x maximizes
both the least possible and greatest possible payoff. Finally, in case x = y, we
assume that a rational player will prefer neither over the other. Therefore, in
these cases, using ≤ to represent the relation “is not preferred to,” we have
x ≤ y in the cases represented by Cases 1 and 2 and each of x ≤ y and
y ≤ x when x is equal to y. In these cases, the preference order exhibits the
properties of a total order. Hence, these comparisons can be crisply defined
as true and are consistent with traditional interval comparison operators.

When x is completely contained in y, as displayed in Figure 7.2, the notion
of payoff preference becomes uncertain, since there exist payoff values in y that
are less than every possible payoff in x as well as values in y that are greater
than every possible payoff in x. In this case, a risk-adverse player may (but not
necessarily will) prefer x to y, since x contains the largest worst possible actual
payoff value, whereas a (rational) risk-taking player may prefer y to x, since y
contains the largest best possible actual payoff. However, for any single game,
either player may also rationally decide that he/she is indifferent to the two
choices or will choose the other. In other words, the interval payoff preference
cannot be determined with classical binary logic. This uncertainty, however,
can be well addressed with the theory of fuzzy logic developed by Zadeh [12].
Therefore, we extend the previous crisp preference comparisons with fuzzy
membership. Such a fuzzy membership extension might be expected to be a
continuous one in terms of holding one interval fixed and moving the other
in terms of its midpoint and width, but in the presented context, no such

Case 1: x ∩ y = ∅

Case 2: x ∩ y ≠ ∅

7 Interval Matrix Games 151

Fig. 7.2. Nested intervals.

continuous extension is possible. To see this, observe that if the widths of x
and y are equal and the two intervals are initially positioned as in Case 1
of Figure 7.1, as x moves to the right, the inequality x ≤ y is crisply true
(having membership value 1 in a fuzzy context) until x = y and is crisply
false (having membership value 0 in a fuzzy context) afterward. Hence, no
membership value of “x is not preferred to y” will allow for a continuous
extension.

To fuzzily quantify uncertainty as in Figure 7.2, we consider the case that
the interval x is positioned with its left endpoint the same as the left endpoint
of y and x ⊂ y. In this case, a rational player will crisply prefer y over x
for the same reasons expressed in the analysis of Figure 7.1. Hence, x ≤ y
crisply, and in terms of a fuzzy relational operator, the membership value
of this relation is 1. On the other hand, when x is positioned to share its
right endpoint with y, a rational player will crisply prefer x to y for the same
reason. Hence, in this case the membership value of x ≤ y is 0. We then define
the fuzzy membership to be a linear mapping from 1 to 0 as the interval x
“moves” from right to left. The corresponding fuzzy membership values of this
relation then can be associated with the notion of the degree of risk-taking
that a player may exhibit. However, this relationship is not a probabilistic one,
but rather a possible one. For example, a risk-adverse player facing a choice
between two such intervals with an x ≤ y membership value close to 1 may
consider the risk of choosing y over x, in spite of the possibility of receiving
an actual payoff less than every value in x. On the other hand, a risk-taking
player may choose y over x with a small positive membership value of x ≤ y.

152 W. Dwayne Collins and Chenyi Hu

The linear map3

f(x,y) =
y − x

w(y)− w(x)
(7.3)

meets the requirement, where w(x) = x− x is the width of the interval x.
As a special instance, note that the membership is 0.5 when the midpoints

of x and y coincide. If one keeps the interval y fixed, one keeps the midpoints
of x and y equal, and one allows the width of x to vary continuously, there is a
pronounced discontinuity in the membership values of x ≤ y when the widths
become equal. However, this discontinuity is not in conflict with the measure
of uncertainty of the comparison, since by our definition there is uncertainty
in the comparison at all widths of x except when the intervals are equal.

Summarizing the above discussion, we extend the crisp comparison opera-
tor by defining the fuzzy comparison operator � for two closed and bounded
intervals for the “not preferred to” relationship as follows.

Definition 2. Let x and y be two nontrivial intervals. The binary fuzzy op-
erator � of x and y returns the membership for “x is not preferred to y”
between 0 and 1 as

x � y =



1 x ≤ y ≤ x < y

y − x

w(y)− w(x)
y < x < x ≤ y, w(x) 6= w(y)

1 x = y, w(x) = w(y)

0 otherwise.

(7.4)

One can define the dual fuzzy relation “is preferred to” in the analogous
way. We will use the symbol � to denote this dual relationship as a reminder
of the antisymmetry in the crisp case. Therefore, � can be defined in terms
of � as follows.

Definition 3. The binary fuzzy operator � of two intervals x and y is defined
as x � y = 1 if x = y, and x � y = 1− (x � y) otherwise.

Definition 4. If the value of x � y is exactly 1 or 0, then we say that x and
y are crisply comparable . Otherwise, we say that they are fuzzily comparable.

7.3 Crisply Determined Interval Matrix Games

In this section, we extend the concept of classical strictly determined games to
interval matrix games whose row and column entries are crisply comparable.
In this case, we will use ≤ and ≥ in place of � and � to emphasize the
crispness of the appropriate interval comparisons.

3 Linear in the position of x as y is held fixed and the width of x is held fixed.

7 Interval Matrix Games 153

Definition 5. Let G be a m×n interval game matrix. If there exists a gij ∈ G
such that gij is simultaneously crisply less than or equal to gik for all k ∈
{1, 2, . . . , n} and crisply greater than or equal to glj for all l ∈ {1, 2, . . . ,m}
then the interval gij is called a saddle interval of the game. An interval matrix
game is crisply determined if it has a saddle interval.

By Definition 5, to determine whether an interval game matrix is crisply
determined, one needs only to do the following:

1. For each row (1 ≤ i ≤ m), find an entry gij∗ that is crisply less than or
equal to all other entries in the i-th row.

2. For each column (1 ≤ j ≤ n), find an entry gi∗j that is crisply greater
than or equal to all other entries in the j-th column.

3. Determine if there is an entry gi∗j∗ that is simultaneously a minimum of
the i-th row and a maximum of the j-th column.

4. If any of the above values cannot be found, the game is not crisply deter-
mined. Otherwise, it is a crisply determined interval matrix game.

Example 3. Examining the interval game matrix (7.2), we found that g14,
g23, and g31 are the minima of rows 1, 2, and 3, respectively. Similarly, g21,
g12, g23, and g34 are the maxima of columns 1, 2, 3, and 4, respectively.
Furthermore, g23 is simultaneously the minimum of the second row and the
maximum of the third column. Hence, g23 = [1, 3] is a saddle interval of the
game matrix. This is a crisply determined interval matrix game.

Mimicking the optimal strategy for a classical strictly determined game,
we have the optimum strategies for both R and C in a crisply determined
interval matrix game defined as follows:

• R should choose any row containing a saddle interval.
• C should choose any column containing a saddle interval.

In this case, uniqueness of the saddle interval value can be established.

Theorem 1. If an interval matrix game is crisply determined, its saddle in-
tervals are identical.

Proof. Let G be a crisply determined interval game matrix and gij and glk

are saddle intervals. Then gij ≤ gik ≤ glk and gij ≥ glj ≥ glk. Hence, from
Definitions 2 and 3, gij = glk.

As in the classical case, in a strictly determined interval game, the knowl-
edge of an opponent’s move provides no advantage, since the payoff is assumed
to be uniformly distributed within a saddle interval.

Definition 6. The value interval of a strictly determined interval game is
its saddle interval. A strictly determined interval game is fair if its saddle
interval is symmetric with respect to zero (i.e., if the saddle interval is of the
form [−a, a] for a ≥ 0). A strictly determined interval game that is not fair
is said to be unfair.

154 W. Dwayne Collins and Chenyi Hu

From Example 3 we know that g23 is a saddle interval of the matrix
game (7.2). However, the midpoint of g23 is 2. Hence, the game is unfair,
since the row player has an average advantage of 2.

7.4 Fuzzily Determined Interval Matrix Games

For a general interval game matrix, crisp comparability may not be satisfied
for all intervals in the same row (or column). Hence, we now must extend
interval comparability to define the fuzzy memberships of an interval vi being
a minimum and a maximum of an interval vector V ; then we define the notion
of a least and greatest interval in V .

Definition 7. Let V = {v1,v2, . . . ,vn} be an interval vector. The fuzzy
membership of vi being a least interval in V is defined as

µ(vi) = min
1≤j≤n

{vi ≺ vj}

and a least interval of the vector V is defined as an interval whose µ value is
largest, that is, an interval vi∗ such that

vi∗ = max
1≤i≤n

µ(vi).

Likewise, the fuzzy membership of vi being a maximum interval in V is

ν(vi) = min
1≤j≤n

{vi � vj}

and a greatest interval of the vector V is

vi∗ = max
1≤i≤n

ν(vi).

Example 4. Find the least and the greatest intervals for the interval vector
V = {[2, 5], [3, 7], [4, 5]}.

Solution: We notice that v2 and v3 are not crisply comparable. By Defi-
nition 7, we have µ([2, 5]) = 1, ν([2, 5]) = 0; µ([3, 7]) = 0, ν([3, 7]) = 2

3 ;
and µ([4, 5]) = 0, ν([4, 5]) = 1

3 . Hence, the least interval of the vector V is
v1 = [2, 5] with membership 1 and the greatest interval of V is v2 = [3, 7]
with membership 2

3 .
Notice, however, that unlike real-valued games, the least or greatest inter-

val of a vector is not necessarily unique. Uniqueness can happen only when
unequal intervals share the same midpoint, as the next example shows.

Example 5. Given the interval vector V = {[2, 5], [3, 6], [4, 5]}, we find that
the least interval of the vector V is v1 = [2, 5] with membership 1. However,
as ν([2, 5]) = 0, ν([3, 6]) = 1

2 , and ν([4, 5]) = 1
2 , each of [3, 6] and [4, 5] is a

greatest interval with membership value 1
2 .

7 Interval Matrix Games 155

Definition 7 provides us a way to fuzzily determine least and greatest
intervals for any interval vectors. We are now able to define fuzzily determined
interval matrix games as follows.

Definition 8. Let G be an m×n interval game matrix. If there is a gij ∈ G
such that gij is simultaneously a least and a greatest interval for the i-th
row and the j-th column of G, respectively, then G is a fuzzily determined
interval game. We also call such gij a fuzzy saddle interval of the game with
its membership as min{µ(gij), ν(gij)}.

It is obvious that the crisply determined interval game defined in Defini-
tion 5 is just a special case of a fuzzily determined interval game with 1 as
its membership. The game value of a fuzzily determined interval game can be
reasonably defined as its fuzzy saddle interval with the largest membership
value.

For the convenience of computer implementations, we summarize our dis-
cussion as the following algorithm.

Algorithm 5 (Determine if an interval matrix game is fuzzily determined,
and, if so, determine the fuzzy saddle intervals.)

1. Initialization:
a) Input interval game matrix G = {gij}m×n.
b) Initialize FuzzilyDetermined to be false.

2. Calculation:
a) Evaluate µ(gij) and ν(gij) for all i = 1 to m and j = 1 to n.
b) For each of i = 1 to m, find j∗ such that µ(gij∗) = max

1≤j≤n
{µ(gij)}.

Note: j∗ depends on i.
c) For each of j = 1 to n, find i∗ such that ν(gi∗j) = max

1≤i≤m
{ν(gij)}.

Note: i∗ depends on j.
3. Checking: For each of i = 1 to m and corresponding j∗, check if gij∗ is

also a greatest interval for the j∗ column. If so:
a) Update FuzzilyDetermined to true.
b) Record gij∗ as a fuzzy saddle interval with its membership min{µ(gij∗),

ν(gij∗)}.
4. Finding results:

a) If FuzzilyDetermined is false, the interval game is not fuzzily de-
termined.

b) Otherwise, the interval game is fuzzily determined; return the fuzzy
saddle intervals that have the largest membership among all recorded
fuzzy saddle intervals. Note: The game is crisply determined if the
resulting membership is 1.

The concept of a fuzzily determined interval game in Definition 8 can be
further generalized. For each gij ∈ G, the membership of gij being simulta-
neously a least and a greatest interval for the i-th row and the j-th column of

156 W. Dwayne Collins and Chenyi Hu

G can be defined as ϕ(gij) = min{µ(gij), ν(gij)}. The entries of G with the
largest value of ϕ can be considered to be fuzzy saddle intervals. Therefore,
for any interval game matrix, one can find its fuzzy saddle intervals as those
intervals with the largest value of ϕ. However, it may not make any practical
sense if the membership value is too small.

There are many applications of classical game theory to problems in de-
cision theory and finance. In particular, the following is an example of how
interval Nash games may apply to determine optimal investment strategies.

Example 6. Consider the case of an investor making a decision on to how to
invest a nondivisible sum of money when the economic environment may be
categorized into a finite number of states. There is no guarantee that any
single value (return on the investment) can adequately model the payoff for
any one of the economic states. Hence, it is more realistic to assume that each
payoff lies in some interval.

For this example it is assumed that the decision of such an investor can
be modeled under the assumption that the economic environment (or nature)
is, in fact, a rational “player” that will choose an optimal strategy. Suppose
that the options for this player are the following: strong economic growth,
moderate economic growth, no growth or shrinkage, and moderate shrinkage
(negative growth). For the investor player the options are the following: invest
in bonds, invest in stocks, and invest in a guaranteed fixed return account. In
this case, clearly a single value for the payoff of either investment in bonds
or stock cannot be realistically modeled by a single value representing the
percent of return. Hence, a game matrix with interval payoff values better
represents the view of the game from both players’ perspectives.

Consider the following interval game matrix for this scenario, where the
percentage of return is represented in decimal form:

Bonds Stocks Fixed
Strong [0.11, 0.136] [0.125, 0.158] [0.045, 0.045]
Moderate [0.083, 0.122] [0.08, 0.11] [0.045, 0.045]
None [0.049, 0.062] [0.02, 0.042] [0.045, 0.045]
Negative [0.022, 0.03] [−0.04, 0.015] [0.045, 0.045]

The intervals in each row and column are strictly comparable to each other,
and using the techniques described earlier, one finds that the game is strictly
determined, with the value of the game the trivial interval [0.045, 0.045]. This
corresponds to the actions of those investors who do not have any insight into
what the economy may do in a given time period and who cannot take high
risks.

7 Interval Matrix Games 157

7.5 Toward Optimal Mixed Strategies Through Linear
Programming

As in the case of classical matrix games, there is no guarantee that an interval-
valued matrix game is crisply or fuzzily determined. For a nondetermined
interval matrix game, one needs to find an optimal mixed strategy for each
player. For such nondetermined interval-valued matrix games, we will assume
that these mixed strategies are represented by crisp probability values, whose
sum for each player is exactly equal to 1. Hence, the goal is to describe a
context in which each player can choose an optimal mixed strategy from the
set of all possible mixed strategies.

We first remind the reader of the traditional meaning of mixed strategy.

Definition 9. Suppose G is an m × n matrix game (interval or other-
wise). Then a mixed strategy for the row player is a set of probabilities
P = (p1, p2, . . . , pm), such that the player selects row i with probability pi.
Similarly, a mixed strategy for the column player is a set of probabilities
(q1, . . . , qn), such that the column player selects the j-th column with prob-
ability qj.

In the classical zero-sum matrix game context, the problem of finding
an optimal mixed strategy solution can be mapped to an equivalent linear
programming problem. We will now investigate such a transformation for
interval-valued games and present the resulting linear programming problems
to be solved.

Suppose G = (gij) is an m×n interval game matrix and the column player
C chooses column j as her strategy. If P = (p1, p2, . . . , pm) is the row player’s
mixed strategy, then the expected value for the row player, given C’s given
strategy, is the interval v defined by

v = p1 · g1j + p2 · g2j + · · ·+ pm · gmj =
m∑

i=1

pi · gij .

To find the row player’s optimal strategy, we use the “max-min” principle
of traditional zero-sum matrix games, namely to find the largest minimum
expected value/payoff. Hence, we need to find a “maximum” value v and the
corresponding mixed strategy P so that p1 · g1j + p2 · g2j + · · ·+ pm · gmj � v
for each 1 ≤ j ≤ n. The corresponding system to solve is

158 W. Dwayne Collins and Chenyi Hu

Maximize v subject to

x1 · g11 + x2 · g21 + · · ·+ xm · gm1 � v

x1 · g12 + x2 · g22 + · · ·+ xm · gm2 � v

...
x1 · g1n + x2 · g2n + · · ·+ xm · gmn � v

m∑
i=1

xi = 1

x1, x2, · · · , xm ≥ 0.



(7.5)

Since the entries of the game matrix G represents the gains to the row player,
the column player attempts to minimize her losses. Therefore, she attempts
to find the smallest maximum expected value, and the corresponding (dual)
system for her is

Minimize v subject to

x1 · g11 + x2 · g12 + · · ·+ xn · g1n � v

x1 · g21 + x2 · g22 + · · ·+ xn · g2n � v

...
x1 · gm1 + x2 · gm2 + · · ·+ xn · gmn � v

n∑
i=1

xi = 1

x1, x2, · · · , xm ≥ 0



(7.6)

In the classical game theory context, one can assume that each of the payoffs
is positive, since an appropriate linear shift of the payoff values does not
affect the characteristics of the game. In the case of interval-valued games, a
similar shift to make each of the interval payoffs positive (i.e., to make the left
endpoint of each interval entry in the game matrix positive) can be employed.
This shift, as will be shown, does not affect the characteristics of the game.

Theorem 2. Suppose G = (gij) is an m×n interval game matrix and c > 0.
The interval v is a row player’s optimal mixed strategy expected value with
strategy distribution P = (p1, p2, . . . , pm) if and only if v + [c, c] is a corre-
sponding optimal value with strategy distribution P for the row player in the
game G′ = (gij + [c, c]).

Proof. If (p1, p2, . . . , pm) is a strategy distribution and 1 ≤ j ≤ n, then since
each xi is a real number, and the shift [c, c] is a real number, we have

m∑
i=1

xi(gij + [c, c]) =
m∑

i=1

(xi · gij + xi · [c, c]) =
m∑

i=1

xigij + [c, c]
m∑

i=1

xi

7 Interval Matrix Games 159

=
m∑

i=1

xigij + [c, c].

Hence, maximizing
∑m

i=1 (gij + [c, c]) ≥ v is equivalent to maximizing∑m
i=1 xigij + [c, c] ≥ v. A similar result follows immediately for the column

player.

Continuing, since the entries in G can be assumed to be positive, we have
v > 0. However, the width of v, in general, can vary. To “normalize” the
width of v in order to investigate a method for solving these interval systems,
we will now assume that v is a degenerate interval; that is, the width of v is
zero. Hence, v can be simultaneously viewed as an interval and real number.
Thus, in this case, dividing each of the inequalities in constrained optimization
problem (7.5) by v and treating the resulting quotients xk/v as a new real-
valued variable zk, we notice that maximizing v is equivalent to minimizing

1
v

=
∑m

i=1 xi

v
=

m∑
i=1

zi,

since
∑m

i=1 xi = 1. Therefore, constrained optimization problem (7.5) can be
converted into an “interval” linear programming4 problem:

Minimize z1 + z2 + · · ·+ zm subject to

z1 · g11 + z2 · g21 + · · ·+ zm · gm1 � 1
z1 · g12 + z2 · g22 + · · ·+ zm · gm2 � 1

...
z1 · g1n + z2 · g2n + · · ·+ zm · gmn � 1

z1, z2, · · · , zm ≥ 0

where the “1” is the interval [1, 1]. After
this linear programming problem is solved
for the values z1, z2, . . . zm, the final val-
ues of x1, x2, . . . xm and v can be quickly
found.



(7.7)

To optimize his strategy, the row player will attempt to find a strategy
distribution P ∗ = (p∗1, p

∗
2, . . . , p

∗
m) and a largest value for v so that, for any

strategy distribution Q for the column player, we will have P ∗GQT � v
for a fixed relational membership value α, treating v as a trivial interval. In
other words, the row player must solve this optimization problem (for a fixed
relational membership value 0 < α ≤ 1).

In a similar fashion, the column player will attempt to find a strategy
distribution Q∗ = (q∗1 , q∗2 , . . . , q∗n) and a smallest value for w ≥ 0 so that, for
4 This is not a linear optimization problem in the usual sense.

160 W. Dwayne Collins and Chenyi Hu

any strategy distribution P for the row player, we will have PG(Q∗)T � w
for the same membership value α. Therefore, the corresponding system will
be 

Maximize z1 + z2 + · · ·+ zm subject to

z1 · g11 + z2 · g12 + · · ·+ zn · g1n � 1
z1 · g21 + z2 · g22 + · · ·+ zn · g2n � 1

...
z1 · gm1 + z2 · gm2 + · · ·+ zn · gmn � 1

z1, z2, · · · , zn ≥ 0


(7.8)

The values of P ∗, Q∗, v, and w are determined by solving these systems.
If each interval gij is interpreted as a trapezoidal fuzzy number, each of

the two previous systems becomes a fuzzy linear programming problem with
a crisp objective function and fuzzy constraints. Several techniques for solv-
ing such fuzzy systems have been developed, including [6]. These techniques
define the notion of an (approximate) optimal solution in a fuzzy context.
However, it is still worthwhile to develop direct techniques to solve interval
linear programming problems, computing exact interval solutions whenever
possible. Hence, we continue to address the development of such a general
theory.

7.6 Solving Interval Inequalities

To solve the optimization problems described in the previous section, we deter-
mine general techniques for finding optima constrained by systems of interval
inequalities.

7.6.1 Single Inequalities

We first consider the simplest case, namely to maximize the real value z
subject to z · x � y, where each of x and y is a positive interval. Clearly, if
both x and y are degenerate intervals, then the maximum value of z is y/x.
Now, consider the case when at least one of x and y is not degenerate. Since
we are using a fuzzy comparison operator for interval comparisons, we will
consider the following restatement of this linear inequality problem:{

Given 0 < α ≤ 1 and intervals x and y, find the maximum value
of z where z · x � y with membership value not less than α.

}
(7.9)

We will represent the relationship between z · x and y in a planar context,
where an interval v is represented by the ordered pair (m(v), r(v)), where
m(v) is the midpoint of the interval and r(v) is the radius of the interval.

7 Interval Matrix Games 161

Since this analysis considers only positive intervals (i.e., m(v) < r(v)), the
corresponding point in this coordinate system must lie below the diagonal in
Figure 7.3.

Fig. 7.3. Graphical Representation of z · x ≺ y.

Since the mapping f(z) = z · x is linear,5 it is easy to see that as z
varies, the interval z · x moves on the line from (0, 0) through (m(x), r(x)).
The dynamics of how the interval z · x “moves through” the interval y has
three general cases that must be considered. To distinguish among these cases,
consider the value of z for which the midpoint of z · x equals the midpoint of
y. This value can easily be computed to be (y + y)/(x + x), which we denote
by c. One of three situations can occur for the relationship of c · x to y:

1. c · x ⊂ y and c · x 6= y (corresponds to the line from (0, 0) through
(m(x), r(x)) in Figure 7.3 intersecting the vertical line containing (m(y),
r(y)) below that point)

2. c · x = y (corresponds to the points (0, 0), x and y being collinear in
Figure 7.3)

3. y ⊂ c · x and c · x 6= y (corresponds to the line from (0, 0) through
(m(x), r(x)) in Figure 7.3 intersecting the vertical line containing (m(y),
r(y)) above that point).

5 It is worthy of note that m(zx) = zm(x) and r(zx) = zr(z) for real points z and
intervals x.

162 W. Dwayne Collins and Chenyi Hu

Consider the case c · x = y. Clearly, z = c is the maximum value as
c · x ≤ y crisply, and if ε > 0, then (c + ε)x ≥ y crisply so that (c + ε)x � y
has membership value 0.

Next, consider the case that y ⊂ c · x and c · x 6= y. Hence, we see that
cx < y and y < cx. Since the membership values of z ·x � y is nonincreasing
as z increases, we need only find the value of z such that the membership
value of z · x � y is equal to α. Hence, we to solve the equation

y − zx

(y − zx) + (zx− y)
= α

for z. Doing so, one finds that

z =
y + α(y − y)
x + α(x− x)

.

Therefore, this is the largest value of z that satisfies the initial inequality
with membership not less than α. Notice that in the special case of α = 1,
we get the optimal value z = y/x, which corresponds to the value where the
left endpoints of z · x and y are equal, which is where the crisp comparisons
become fuzzy.

Considering the last case, namely c · x ⊂ y and c · x 6= y; we once again
must find the value of z so that the membership value of z · x � y. However,
since y properly contains z ·x once the left endpoint of the two intervals agree,
the portion of the interval y to the right of z · x must be considered. Hence,
in a symmetrical fashion to the previous case, the equation

y − zx

(zx− y) + (y − zx)
= α

must be solved for z. Doing so generates the maximum value for z to be the
expression

y − α(y − y)
x− α(x− x)

.

Summarizing, we have the following theorem.

Theorem 3. If each of x and y is a positive interval and 0 < α ≤ 1, then
there is a maximum value of the real-valued variable z such that z ·x � y with
fuzzy membership value not less than α.

Example 7. Solve the fuzzy linear programming problem for α = 0.9:
maximize z subject to

z[1, 2] � [3, 5]
z ≥ 0



7 Interval Matrix Games 163

The value of z so that the midpoints are equal is c = (3 + 5)/(1 + 2) = 8/3.
In this case, [3, 5] is a proper subset of c[1, 2] = [8/3, 16/3], so the maximum
value of z that satisfies the inequality with the stated membership cut value
is

z =
3 + 0.9(2)
1 + 0.9(1)

=
4.8
1.9

= 2.526315

7.6.2 Extending to More General Cases

Let each of z1 and z2 be a real-valued variable, let each of x1, x2, and y be
a positive interval, and fix α with 0 < α ≤ 1. Consider the interval inequality

z1 · x1 + z2 · x2 ≺ y

and the objective function z1 + z2. Let the interval binary operator 	 be de-
fined as x − y = [x − y, x − y] provided w(x) ≥ w(y). If z1 is held constant
between 0 and the corresponding maximum value of c that satisfies c ·x1 � y
(setting z2 = 0 and solving the resulting simpler case using the fuzzy mem-
bership value α), then the maximum value of z2 that satisfies the inequality
z2 · x2 � (y 	 z1 · x1) using the membership value α can be determined by
the above algorithm. The resulting value for z2, in each of the three cases, is
clearly a function of z1; call it z2max(z1) . Hence, the original objective function
can be rewritten as z1 + z2max(z1) , which can be seen to be a continuous func-
tion of z1. Therefore, the objective function must attain a maximum value on
the interval [0, c], which then can be used to determine the solution to the
initial interval linear programming problem.

The following is a simple example that illustrates this approach.

Example 8. Solve the fuzzy linear programming problem for α = 0.9:
maximize x + y subject to

x[1, 2] + y[2, 3] ≺ [4, 8]
z ≥ 0


Solution: We first consider the inequality x[1, 2] ≺ [4, 8]. Note that the two
intervals are collinear in the interval midpoint-radius plane, and setting the
two midpoints equal gives c = 4. Therefore, we must consider the resulting
inequality y[2, 3] ≺ ([4, 8] 	 x[1, 2]) (i.e., y[2, 3] ≺ [4 − x, 8 − 2x]), for each
x in [0, 4]. In the interval midpoint-radius plane, the interval [2, 3] lies below
the line containing [1, 2] and [4, 8]; hence, the line containing (0, 0) and the
interval [2, 3] intersects the vertical line containing [4− x, 8− 2x] below that
point. See Figure 7.4. Therefore, for each value of x in [0, 4], the corresponding
value of y is

164 W. Dwayne Collins and Chenyi Hu

Fig. 7.4. x[1, 2] + y[2, 3] ≺ [4, 8]

y =
(8− 2x)− 0.9(8− 2x− (4− x))

3− 0.9(3− 2)
v =

(2− 0.9)(4− x)
3− 0.9

=
1.1(4− x)

2.1
.

We must optimize the objective function

x + y = x +
1.1(4− x)

2.1

on the interval [0, 4]. The derivative of this function is 1 − 1.1/2.1, which is
positive. Therefore, the maximum value of the objective function occurs when
x = 4 and y = 0.

7.7 Conclusions

A model for crisply and fuzzily determined interval-valued Nash games has
been developed using an appropriate fuzzy interval comparison operator. This
model parallels the classical game context in a closely analogous way. Also,
the theory of optimal mixed strategies for interval-valued games has been
introduced, once again mimicking the classical model of converting the game
into a linear programming problem.

To use interval linear programming techniques to find optimal mixed
strategies in interval games, some assumptions must be made relative to the
expected value interval v. Assuming that this interval is degenerate generates
corresponding “interval” linear programming problems that can be quickly
solved. However, as the expected value of the game corresponds to a linear

7 Interval Matrix Games 165

combination of the entries in the game matrix, this assumption appears to be
unrealistic.

Acknowledgment: This work is partially supported by the U.S. National
Science Foundation under grant CISE/CCF-0202042.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications
of the ACM 26(11), 832–843 (1983)

2. Collins, D., Hu, C.: Studying interval valued matrix games with fuzzy logic. Soft
Computing. 12(2), 147–155 (2008)

3. Dutta, P.K.: Strategies and Games: Theory and Practice. The MIT Press, Cam-
bridge, MA (1999)

4. Garagic, D., Cruz, J.B.: An approach to fuzzy noncooperative Nash games.
Journal of Optimization Theory and Applications 118(3), 475–491 (2003). URL
http://dx.doi.org/10.1023/B:JOTA.0000004867.66302.16

5. Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially Or-
dered Sets. Wiley, New York (1985)

6. Fuller, R., Zimmermann, H.: Fuzzy reasoning for solving fuzzy mathematical
programming problems. Fuzzy Sets and Systems 60, 121–133 (1993)

7. Nash, J.: Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America 36, 48–49 (1950)

8. Nash, J.: Non-cooperative games. The Annals of Mathematics 54(2), 286–295
(1951). URL http://jmvidal.cse.sc.edu/library/nash51a.pdf

9. Russell, S., Lodwick, W.A.: Fuzzy game theory and internet commerce: estrategy
and metarationality. In: R.L. Muhanna, R.L. Mullen (eds.) Proceedings of the
Annual Meeting of the North American Fuzzy Information Processing Society
(NAFIPS), pp. 93–98. IEEE, New York (2002)

10. Winston, W.L.: Operations Research: Applications and Algorithms, 4th ed.
Thomson Brooks/Cole, Pacific Grove, CA (2004)

11. Wu, S.H., Soo, V.W.: A fuzzy game theoretic approach to multi-agent coordina-
tion. In: PRIMA ’98: Selected Papers from the First Pacific Rim International
Workshop on Multi-Agents, Multiagent Platforms, pp. 76–87. Springer-Verlag,
London (1999)

12. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338-353 (1965)

http://dx.doi.org/10.1023/B:JOTA.0000004867.66302.16
http://jmvidal.cse.sc.edu/library/nash51a.pdf

8

Interval-Weighted Graphs and Flow Networks

Chenyi Hu and Ping Hu

Computer Science Department, University of Central Arkansas, 201 Donaghey
Avenue, Conway, AR 72035-0001, USA. chu,phu@uca.edu

Weighted graphs are useful computational models and have broad applications
in decision making and knowledge processing. In contrast to the classical
definition, weights in real-world applications often vary within intervals rather
than being constant. In this chapter, we study interval-weighted graphs. By
defining a fuzzy partial order relationship for intervals, we extend classical
graph algorithms to interval-weighted graphs and capacity flow networks. An
application on task management is modeled with an interval capacity flow
network as an example.

8.1 Interval-Weighted Graphs

A graph G = (V,E) consists of a set of vertices (V) and a set of edges (E).
G is weighted if for every edge e ∈ E there is a weight associated with e. In
applications, these weights can represent meaningful things such as distance
or cost. Therefore, weighted graphs have been well studied and broadly used
in solving real-world applications.

A graph G is undirected if the two vertices of every edge are not ordered.
Otherwise, it is a directed graph or digraph. A path of a graph is a consecutive
sequence of edges. A graph G is connected if for any two vertices A and B
in G there exists a path such that one can travel between A and B. The
graphs studied in this chapter are initially assumed to be positively weighted,
connected, and undirected.

In classical graph theory, the weights in a graph are constants. However, in
real applications, these weights can vary within ranges rather than constants.
For example, travel time from A to B may not be exactly 2 hours but usually
between 1 hour and 50 minutes and 2 hours 5 minutes. As another example,
the available bandwidth of a network connection may be between 75% and
80% during a given time period. To better model such variability of weights
in a graph, instead of using constants, we represent weights as intervals. We

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 8, c© Springer-Verlag London Limited 2008

chu, phu@uca.edu

168 Chenyi Hu and Ping Hu

investigate interval-weighted graphs in this chapter.1 Our initial investiga-
tions into interval-weighted graphs are reported in [9]. Figure 8.1 presents an
interval-weighted, connected, undirected graph.

[3, 5]

A
C

D

B

E F

[9, 11]

[2, 4]

[8, 10]

[2, 8]
[1, 4] [3, 5]

[2, 5]

[1, 3]

[2, 6]

[3, 8]

Fig. 8.1. An interval-weighted graph.

Typical applications of a weighted graph include finding shortest paths and
identifying a minimum spanning tree. Algorithms for finding shortest paths
include Dijkstra’s algorithm [4], the Bellman-Ford algorithm [2], and others.
Algorithms that find a minimum spanning tree include Kruskal’s algorithm

[11], the Prim-Jarnik algorithm [12] and Bor◦uvka’s algorithm [3].
In studying shortest paths and minimum spanning trees of weighted

graphs, an ordering relationship is necessary to compare distances or the sum
of the weights. To this end, we must investigate ways to order intervals for
comparison.

8.2 Fuzzy Partial Order Relations for Intervals

8.2.1 Incomparability of Intervals in Binary Logic

For any two given real numbers x and y, based on their positions on the
real line, the statement “x is less than y” can only be either true or false.

1 The concept of interval-weighted graph is different from the term interval graph
in existing literature. A definition of an interval graph can be found in [6], and
stated as “It [an interval graph] refers a graph (X,∼) whose points can be mapped
into intervals in a linearly ordered set such that, for all distinct x and y, x ∼ y if
and only if the intervals assigned to x and y have a nonempty intersection.”

8 Interval-Weighted Graphs and Flow Networks 169

However, the relation between two nonempty intervals x and y can be fairly
complicated. They can be disconnected, partially overlapping, or completely
overlapping. In [1], Allen listed 13 possible temporal relationships between 2
time intervals. Krokhin et al. further studied the relations in [10], and indi-
cated that the relations between intervals could be 213 = 8192 possible unions
of the 13 basic interval relations. This means that the statement “an interval
x is less than another interval y” cannot be expressed in binary logic. In short,
there is not a general binary ordering relationship between two intervals.

8.2.2 A Binary Interval Operator

In studying interval matrix games in Section 7.2 of Chapter 7, we discussed
ways to determine if an interval x is less than or equal to another interval
y with the binary interval operator �. We further modify the discussion and
define a binary interval operator, ≺, to indicate the degree (or fuzzy member-
ship) of an interval x less than another interval y. Then we prove that the
operator ≺ in fact establishes a fuzzy partial order relation for intervals.

Let x and y be two intervals. If x < y,∀x ∈ x and y ∈ y, we say that x
is less than y. This happens only when x ∩ y = ∅ and x is completely on the
left side of y. In this case, we denote x ≺ y = 1.

An interval x can be on the left of another interval y but partially over-
lapped (i.e., x ≤ y ≤ x < y). In this case, we may say that “x is weakly less
than y” and denote x ≺ y = 1−.

Assume x ⊂ y and x 6= y; thus, x ≤ y ≤ x ≤ y but x = y and x = y

cannot both be true simultaneously. It is easy to prove 0 ≤ y − x

w(y)− w(x)
≤ 1

when x ⊂ y and x 6= y. Also, when x = y,
y − x

w(y)− w(x)
= 1 (close enough

to 1−) and
y − x

w(y)− w(x)
= 0 as x = y. Hence, we define

x ≺ y =
y − x

w(y)− w(x)
.

When the midpoints of x and y overlap (i. e., m(x) = m(y), and w(x) 6=
w(y)), we have

y − x

w(y)− w(x)
= 0.5.

Finally, when x and y are the same, one is equally greater and less than
the other, and we write x ≺ y = 0.5.

Summarizing the above discussion, we define a binary operation with the
operator ≺ for two intervals x and y as follows.

Definition 1. Let x = (x, x) and y = (y, y) be two intervals and let ≺ be a
binary interval operator. The binary operation x ≺ y returns a real between 0
and 1 as

170 Chenyi Hu and Ping Hu

x ≺ y =



1 if x < y

1− if x ≤ y ≤ x < y

y − x

w(y)− w(x)
if y ≤ x < x ≤ y and w(x) < w(y)

0.5 if w(x) = w(y) and x = y

(8.1)

Since the value of x ≺ y is between 0 and 1, it can be viewed as the fuzzy
membership for the statement “x is less than y”. This definition also works
when one or both of x and y are trivial intervals. The above definition implies
the following corollaries.

Corollary 1. Let x and y be two intervals, then the following holds:

1. x ≺ y = 0.5 iff m(x) = m(y).
2. x ≺ y > 0.5 iff m(x) < m(y).
3. x ≺ y < 0.5 iff m(x) > m(y).

Proof. We prove these three statements one by one.

1. Assume x ≺ y = 0.5. If x = y, their midpoints are the same (i.e., m(x) =

m(y)). Otherwise, by Definition 1, 0.5 =
y − x

w(y)− w(x)
=

y − x

2r(y)− 2r(x)
.

Hence, y − x = r(y) − r(x) =
y − y

2
− x− x

2
. Therefore, y + y = x + x

and m(x) = m(y).
Now, assume m(x) = m(y). If x = y, from Definition 1, x ≺ y = 0.5. If
x 6= y, then y + y = x+x. Hence, y−x = x− y. However, w(y)−w(x) =

y−y−(x−x) = (y−x)+(x−y) = 2(y−x). Hence, x ≺ y =
y − x

w(y)− w(x)
=

0.5.
2. Assume x ≺ y > 0.5. If x ≺ y = 1, then x < y. Since m(x) ≤ x and

y ≤ m(y), we have m(x) < m(y). If x ≺ y = 1−, then x ≤ y ≤ x < y.
Hence, we have x + x < y + y. This implies m(x) < m(y). Otherwise,

x ≺ y =
y − x

2r(y)− 2r(x)
> 0.5 implies y − x > r(y) − r(x) (i.e., y − x >

y − y

2
− x− x

2
). Hence, y + y > x + x and m(x) < m(y).

Now assume m(x) < m(y). Then x+x < y+y implies y−x > r(y)−r(x).

If y ≤ x < x ≤ y and r(y) > r(x), then x ≺ y =
y − x

2(r(y)− r(x))
> 0.5.

Otherwise, x ≺ y = 1 or 1−.
3. Assume x ≺ y < 0.5. Then we have y − x < r(y) − r(x) (i.e., y − x <

y − y

2
− x− x

2
). Hence, we have x+x > y+y. This implies m(x) > m(y).

Now, assume m(x) > m(y). Then x+x > y+y implies y−x < r(y)−r(x).

Hence, x ≺ y =
y − x

2[r(y)− r(x)]
< 0.5.

8 Interval-Weighted Graphs and Flow Networks 171

Corollary 2. Let x and y be two intervals and x ≺ y 6= 1. Then x ≺ y =
(x + z) ≺ (y + z) for a proper interval z.

Proof. From the definition, if x ≺ y = 1−, then x ≤ y ≤ x < y. Since z ≤ z,
we have x + z ≤ y + z ≤ x + z < y + z. Hence, (x + z) ≺ (y + z) = 1−.

If x ≺ y = 0.5, then m(x) = m(y). Hence, m(x + z) = m(x) + m(z) =
m(y) + m(z) = m(y + z), and (x + z) ≺ (y + z) = 0.5.

Otherwise, (x ≺ y) =
y − x

w(y)− w(x)
. Since (y + z) − (x + z) = y − x and

w(y + z)− w(x + z) = w(y)− w(x), we have (x ≺ y) = (x + z) ≺ (y + z).

As a dual of the above discussion, we can define a binary operator � as
the following to indicate the degree of x greater than y

Definition 2. Let x and y be two intervals and let � be a binary interval
operator that returns the fuzzy membership of the statement “x is greater
than y” as (x � y) = 1− (x ≺ y).

Similarly, we have the following corollary.

Corollary 3. Let x and y be two intervals. Then

1. x � y = 0.5 iff m(a) = m(b).
2. x � y > 0.5 iff m(a) > m(b).
3. x � y < 0.5 iff m(a) < m(b).

8.2.3 Fuzzy Partial Order Relations for Intervals

In binary logic, a relation R on a set X is a partial order iff (a) ∀x ∈ X, xRx→
false (inreflexive) and (b) ∀x, y, z ∈ X, (xRy, yRz) → xRz (transitive); then
R is a partial order relation on X. To extend these concepts in fuzzy logic, we
define the concepts of fuzzy inreflexibility, fuzzy transitivity, and fuzzy partial
order relation as follows. We then prove that the binary operator ≺ is in fact
a fuzzy partial order relation for intervals.

Definition 3. A fuzzy relation R on a set X is fuzzily inreflexive if ∀x ∈
X, xRx = 0.5; R is fuzzily transitive if ∀x, y, z ∈ X, if xRy > 0.5 and yRz >
0.5; then xRz > 0.5. If R is both fuzzily inreflexive and transitive, then R is
a fuzzy partial order relation.

Theorem 1. The binary interval operators ≺ is a fuzzy partial order relation
for intervals.

Proof. Since x ≺ x = 0.5, the operator ≺ is fuzzily irreflexive.
Let x,y, and z be intervals. From Corollary 1, x ≺ y > 0.5 implies m(x) <

m(y), and x ≺ y > 0.5 implies m(y) < m(z). The midpoints of intervals are
just reals. Hence, x ≺ y > 0.5 and x ≺ y > 0.5 imply m(x) < m(z) and
x ≺ z > 0.5. Therefore, the binary operator ≺ is fuzzily transitive.

Hence, the binary interval operator ≺ is a fuzzy partial order relation for
intervals.

172 Chenyi Hu and Ping Hu

Similarly, we can easily prove the interval operator � forms a fuzzy partial
order too.

We have now established fuzzy partial orders for intervals in terms of fuzzy
membership. We complete this section with an example.

Example 1. For the two nested intervals x = [0, 4] and y = [1, 3], the fuzzy
memberships for “x is less than y” and “x is greater than y” are both 0.5
since m(x) = m(y) = 2.

Letting x = [0, 3] and y = [0, 4], “x is less than y” has a fuzzy membership
of 1−, whereas the fuzzy membership for “x is greater than y” is zero.

For the intervals x = [1, 3] and y = [0, 5], ‘x is less than y’ has a fuzzy
membership of 2/3, whereas the fuzzy membership of “x is greater than y”
is 1/3.

8.3 Shortest Paths and Minimum Spanning Trees for
Interval-Weighted Graphs

Finding shortest paths and minimum spanning trees have be applied to knowl-
edge processing and decision making. With the fuzzy partial order relations
for intervals, we now study fuzzy shortest path and minimum spanning tree
for interval-weighted graphs in this section.

8.3.1 Dijkstra’s Shortest Path Algorithm

First, let us review the classical Dijkstra’s shortest path algorithm [4] for a
constant weighted graph. It is provided that all weights are positive. To find
a shortest path from a vertex, v, to all others in a connected graph, Dijkstra’s
algorithm uses growing “clouds” with a greedy approach. Instead of repeating
the details of the well-known Dijkstra’s algorithm, we list it in pseudo-code
here.

Algorithm 6 Dijkstra’s Shortest Path Algorithm

Input: An undirected graph G with nonnegative weights, and
a starting vertex v in G.

Output: A label D[u] for each vertex u of G, such that D[u]
is the shortest distance from v to u in G.

for each vertex u in G
if (u = v)

D[u] = 0
else

D[u] = infinity

Store all vertices in a priority queue Q with D[u] as key

8 Interval-Weighted Graphs and Flow Networks 173

while (Q is not empty)
u = Pop(Q)
for all vertexes z adjacent to u and z in Q do
if D[u] + w(u, z) < D[z] then

D[z] = D[u] + w(u, z)

Return the label D[u] of each vertex of G

The most critical steps of Dijkstra’s algorithm are (1) to keep a priority
queue for bringing in a vertex to the “cloud”, and (2) to update the distance
labels of D[u] + w (u, z) after a new vertex u is brought into the “cloud”.
Whenever D[u] + w (u, z) < D[z], we update D[z] by D[u] + w (u, z)
and then update the priority queue Q. This edge relaxation process guarantees
that only the vertex with minimum distance is added in to the “cloud.”

To extend classical Dijkstra’s algorithm for interval-weighted graphs, we
only need to apply the fuzzy partial order relation for intervals to maintain
a priority queue and to perform the edge relaxation. For example, the con-
dition for edge relaxation would be if [(D[u] + w(u, z)) ≺ D[z]] > 0.5,
then D[z] = D[u] + w(u, z). Similarly, one may extend the Bellman-Ford
algorithm [2] to find shortest paths of an interval-weighted digraph.

8.3.2 Crisp and Fuzzy Shortest Paths for an Interval-Weighted
Graph

In an interval-weighted graph, the weight of a path P is defined as the total
weight of its edges, that is,

w(P) =
∑

i,ei∈P

w(ei).

A path P ∗ from a vertex A to another vertex B is crisply shortest if w(P ∗) ≺
w(P) = 1 or 1− for all other paths P from A to B. Otherwise, if 0.5 < w(P ∗) ≺
w(P) < 1 for all paths P from A to B, P ∗ is fuzzily shortest. In applying an
interval shortest path for knowledge processing, one need to consider its fuzzy
membership.

Applying Dijkstra’s algorithm to an interval-weighted graph, we bring a
vertex u into Dijkstra’s “cloud” based on the least interval label D[u] that is
the total interval weight from the starting vertex v to u. For example, if u0 is
the first vertex brought into the “cloud,” then the interval weight of the edge
v-u0 is the least, either crisply or fuzzily, among all edges directly connected
to the starting vertex v.

If every top element in the priority queue of Dijkstra’s algorithm has crisply
least interval label, clearly the shortest paths are crisp. Readers can easily
verify that the shortest paths of the interval-weighted graph G in Figure 8.1
from A to C, E, F are crisp. The shortest path from A to C has an interval

174 Chenyi Hu and Ping Hu

weight [2, 5]. The shortest path from A → C → E has an interval weight [4,
11]; and A → C → E → F has an interval weight [6, 15].

Importantly, when the label of the dequeued vertex D[u] is the least, even
fuzzily, compared with labels of vertices other than u, we would prefer to bring
in u into the “cloud” rather than others. Since all edges have positive weight,
bringing in a vertex other than u, say z, would result in a longer path to u.
This is because we must add at least one more edge from z to reach u.

However, there is a case that we should consider more carefully. There
can be multiple paths to the top vertex u of the priority queue, and the label
D[u] is fuzzily the least among those of these paths. In this case, bringing
u into the cloud results in a fuzzy shortest path. The fuzzy membership of
the label D[u] being the least represents the degree of the path is shortest.
Furthermore, the fuzziness will be inherited to z when z is brought into the
“cloud” through the edge (u, z). This is from Corollary 2.

Finally, the following theorem indicates the uniqueness of a shortest path
if its fuzzy membership is greater than 0.5.

Theorem 2. Let P be a path from a vertex A to another vertex B in an
interval-weighted graph. If the fuzzy membership of P being the shortest is
greater than 0.5, then there is no other path from A to B being the shortest
with membership greater than 0.5.

Proof. Let P and P’ be two distinct paths from A to B and both have the
fuzzy membership being the shortest greater than 0.5. Then weight(P) ≺
weight(P ′) > 0.5 and weight(P ′) ≺ weight(P) > 0.5. Since ≺ is a fuzzy
partial order from Theorem 1, it is fuzzily transitive. Hence, weight(P) ≺
weight(P) > 0.5. However, ≺ is also fuzzily irreflexive; that is, weight(P) ≺
weight(P) = 0.5. Contradiction.

8.3.3 Minimum Spanning Tree for Interval-Weighted Graphs

By removing some edges from a connected graph G = (V,E), one may form
a subgraph G′ = (V,E′) with the same number of vertices but less edges. If
G′ is in fact a tree T , then it is called a spanning tree of G. If G is weighted,
then among all of its spanning trees the one with the minimum total weight
is called the minimum spanning tree (MST) of G. Obviously, finding an MST
can be useful in knowledge processing and for decision making.

The first algorithm that finds a minimum spanning tree was developed by

the Czech scientist Bor◦uvka [3]. Its purpose was to find efficient electrical cov-
erage of Bohemia. Other algorithms to find the MST include Kruskal’s MST
algorithm [11] and Prim-Jarnik’s MST algorithm [12]. Most MST algorithms,
if not all, take a greedy approach. Hence, sorting is often required according to
a partial ordering relation. The fuzzy partial order relation for intervals in this
chapter can be applied to extend these MST algorithms for interval-weighted
graphs.

8 Interval-Weighted Graphs and Flow Networks 175

To describe a practical algorithm that finds a minimum spanning tree
for an interval-weighted graph, let us consider to extend the Kruskal’s MST
algorithm. For the reader’s convenience, we list Kruskal’s MST algorithm in
pseudo-code.

Algorithm 7 Kruskal MST

Input: A connected weighted graph G
Output: A spanning tree T of G with the minimum total weight.

for each vertex v in G do
define a Cloud(v) of {v}

let Q be a priority queue.
Insert all edges into Q using their weights as the key
T = empty

while T has fewer than n-1 edges do
edge e = Pop(Q)
Let u, v be the endpoints of e
if Cloud(v) != Cloud(u) then
Add edge e to T
Merge Cloud(v) and Cloud(u)

return T

In the above algorithm, the most critical step is to construct a priority
queue, Q, using the weights of edges as the key. Therefore, to extend Kruskal’s
MST algorithm to a connected interval weighted graph, we need to apply the
fuzzy partial order relation for intervals to form a priority queue according to
the interval weights of the edges.

If we use a heap [8] to implement the priority queue, the interval-weighted
edges are stored in an AVL tree. Let M be the number of edges of the interval-
weighted graph. The re-heap after a dequeue is at most log M . Hence, the
overall asymptotic complexity of the extended Kruskal’s algorithm is still
O (M log M).

We now discuss the fuzzy membership of the MST generated by consecu-
tively removing interval-weighted edges from the root of the heap. If a con-
nected interval-weighted graph has N vertices, then its spanning tree consists
of N − 1 edges. The last dequeued edge from the root of the heap has its
fuzzy membership being the least. By using eroot, eleft, and eright to denote
the edges in the root and its left and right children, respectively, the mem-
bership of eroot being the least is the smaller one between eroot ≺ eleft and
eroot ≺ eright. It can be used as the fuzzy membership for the MST. If the
last dequeued edge is the least interval of the heap crisply, then bringing any
other edge in the rest of the heap would increase the total weight of the tree.
Hence, the tree is an MST crisply. Otherwise, if the last dequeued edge is the
least interval of the heap fuzzily, then the tree is an MST fuzzily. Similarly,
we can extend other available MST algorithms for interval-weighted graphs
with interval partial order relations.

176 Chenyi Hu and Ping Hu

Example 2. Find a minimum spanning tree in Figure 8.1.
In this simple example, instead of constructing an AVL tree to form a

priority queue, we sort the edges according to their interval-weights in as-
cending order. They are: CD [1, 3], CB [1, 4], EF [2, 4], AC [2, 5], CE [2,
6], AD [3, 5], BE [3, 5], AB [2, 8], DE [3, 8], DF [8, 10], and BF [9, 11].
Applying the Kruskal’s MST algorithm, we bring in CD, then CB, then EF,
and then AC to construct the spanning tree without any questions. This re-
sults in two “clouds.” One consists of A, B, C, and D. The other consists of
E and F. To connect the two subtrees, we can pick BE [3, 5] or CE [2, 6]
since [3, 5] ≺ [2, 6] = 0.5. If we pick BE, the total weight of the spanning
tree is [9, 21]. Otherwise, if we pick CE, the total weight is [8, 22]. Since
[9, 21] ≺ [8, 22] = 0.5, the two spanning trees are equally being minimum with
membership 0.5.

8.4 Flow Networks with Interval Uncertainty

Capacity flow networks are useful in knowledge processing and decision mak-
ing. We study them associated with interval uncertainty in this section. Before
doing so, let us briefly review related concepts of a capacity flow network.

8.4.1 Capacity Flow Network

A directed graph G = (V,E) can model a flow network with two specified
nodes: S (source) and D (destination/sink). A flow on an edge e ∈ E is
denoted by f(e). The maximum allowable flow on an edge e ∈ E in the given
direction is called the capacity of that edge and denoted as c(e). A flow on the
network is a function f that satisfies the capacity and conservation constraints
described as ∀e ∈ E : 0 ≤ f(e) ≤ c(e) and Σinf(e) = Σoutf(e),∀v ∈ V except
S and D. The value of a flow is the sum of all outgoing flow f(e) from the
source S.

Classically, the flow capacity on an edge, c(e), is assumed a constant.
Finding the maximum allowable flow, max-flow on a capacity network is a
meaningful application. Ford and Fulkerson developed an algorithm [7] that
could find a max-flow on a network computationally. The basic idea of the
algorithm is as follows.

For a flow f on an edge e = (u, v) directed from u to v, the forward residual
capacity from u to v is denoted by ∆f (u, v) = c(e) − f(e), where c(e) is the
forward capacity of e. The residual capacity from v to u, in the backward
direction of the edge (u, v), is defined as ∆f (v, u) = f(e).

Let π be a path from S to D that is allowed to traverse edges in either
the forward or backward direction. The residual capacity ∆f (π) of a path π
is the minimum residual capacity of its edge; that is, ∆f (π) = min

e∈π
∆f (e). If

∆f (π) > 0, then π is called an augment path. A value of total flow then can

8 Interval-Weighted Graphs and Flow Networks 177

be increased by adding the minimum residual capacity on each forward edge
and subtracting it from every backward edge in the augment path.

By exhaustively finding augment paths on a capacity flow network, one
may increase the total flow to the maximum within the capacity constraints.
Figure 8.2 shows an example of a maximum flow on a capacity network. The
flow f(e) and capacity c(e) associated with an edge e are represented com-
pactly as f(e)/c(e).

S
C

A

B

E D

5/5 4/4
5/5

1/3

1/3
0/2

5/6

2/7

4/4

4/4

3/3

Fig. 8.2. Maximum flow on a capacity flow network

In [5], Edmonds and Karp then improved overall efficiency of the Ford-
Fulkerson algorithm. By attaching a positive cost constant on each edge of a
flow network, Edmonds and Karp further proposed their algorithm [5] that
could find a max-flow with minimum cost on a capacity network.

Let C be a cycle, with both forward and backward edges, in a maximum
flow network. For each e ∈ C, one can find its residual capacity. The product
of the residual capacity and the cost on the edge is called the residual cost.
The sign of a residual cost is determined as follows: positive if the edge is
forward; otherwise negative. If the total residual cost on the cycle is negative,
the cycle is called an augmented cycle. It has been proved that a max-flow is a
min-cost flow if and only if it does not contain any augment cycle. Therefore,
by repeatedly adjusting the flow on each edge of the augment cycle, the total
cost will be reduced to approach the min-cost.

178 Chenyi Hu and Ping Hu

8.4.2 Considerations of Interval Uncertainty

In practice, due to uncertainty, the maximum capacity and the cost on an
edge can be interval-valued. For example, a section of four-lane highway may
open two to four lanes during a day because of construction. The cost of a
flow on an edge may vary too. To model such kinds of uncertainty, we use
intervals to represent flow capacity and cost on an edge. By allowing interval
maximum capacity and cost, we have an interval flow network.

To shift a flow on an augment path and/or an augment cycle on a constant
flow network, the real number arithmetic property of additive inverse is used.
This means that if b = c−a, then a+b = c. However, for interval subtraction,
this property is no longer valid. For example, [1, 2]+ [2, 4] = [3, 6], but [3, 6]−
[2, 4] = [−1, 4] 6= [1, 2]. We use the interval cancellation operation, 	, defined
below as an additive inverse for intervals.

Definition 4. Let x and y be two intervals. The cancellation of y from x is
defined as x	 y = [x− y, x− y] provided w(y) ≤ w(x).

In the above definition, the condition w(y) ≤ w(x) ensures x− y ≤ x− y.
Therefore, z = x 	 y is a proper interval and x = y + z. With the interval
cancellation operation, we can calculate the interval forward residual capacity
on the edge e = (u, v) as ∆f (u, v) = c(e) 	 f(e). By using the fuzzy interval
partial order relation, we can find the minimum residual capacity for a path
π. Let ∆f (m) be the minimum residual capacity among all edges in π with
fuzzy membership greater than 0.5. Then it is the interval residual capacity
of the path π. If ∆f (m) ≺ 0 > 0.5, then π is an interval fuzzy augment path.
We can then increase the total value of flow by adjusting flow on an interval
fuzzy augment path. Similarly, we can find an interval fuzzy augment cycle to
minimize the cost.

8.4.3 An Application: Job Scheduling on a Flow Network with
Interval Uncertainty

As an application related to decision making, we study job/task scheduling
on a capacity flow network. A job j is to start from the source S and to
complete at the destination D. To simplify our study, we assume that the
required capacity resource for completing a job is constant. However, the cost
associated with each edge can vary within an interval. In practice, the cost
may or may not be scalable. For example, the monetary charge of shipping
a package from S to D can be proportional to its weight. However, driving a
light sedan or an eighteen wheeler from S to D may take comparable time. In
this application, we assume that the cost on each edge is proportional to the
flux on that edge.

8 Interval-Weighted Graphs and Flow Networks 179

Max-Flow Min-Cost Scheduling

Let J = {j1, j2, . . . , jn} be a collection of jobs. Assume that each job ji requires
a capacity fi. We need to schedule them on a constant capacity network with
an interval cost on each edge. Our objective is to fully utilize the capacity of
the network and minimize the total cost. To meet the capacity constraint, we

assume
n∑

i=1

fi ≤ |fmax|, where |fmax| is the maximum capacity of the network.

The total cost of the flow f is T (f) = Σe∈Et(e)f(e), where t(e) denotes the
unit cost of a flux on the edge e. To schedule J with minimum total interval
cost, we first assign the jobs to the flow network and satisfy the capacity
constraints. Then we try to shift flow from more cost paths to less until there
is no such path available. Let C be a cycle, with both forward and backward
edges, in a value |f | flow network. For a forward edge e ∈ C, its residual cost
interval, R(e), is the product of its capacity residual and cost interval. If e is
a backward edge, then its residual cost interval is the negative of the product.
The residual cost interval of the cycle C,R(C), is the sum of the residual cost
interval of all edges on C, i. e., R(C) = ΣR(e) for all e ∈ C.

Through interval computing, we can find the interval residual cost for the
cycle C. By comparing R(C) with zero, R(C) ≺ 0, we obtain the degree of
that the cycle C is a fuzzy augment cycle. If there is a flow that can be possibly
shifted from a path p1 to another path p2 and reduces total cost, then p1 and
p2 form an augment cycle with membership more than 0.5. By repeatedly
adjusting flow on each edge of fuzzy augment cycle, the total interval cost will
approach its minimum while maintaining the value of the flow. We summarize
the above discussion as

Algorithm 8 Job scheduling on a capacity flow network with scalable inter-
val cost

1. Find the maximum capacity of the flow network fmax.
2. Assign the jobs to meet the capacity constraints, provided Σfi ≤ fmax.
3. Repeatedly find augmenting cycles with fuzzy membership greater than 0.5

or a preset α-cut, and then reduce the total cost by shifting the flow.

Job Scheduling with Cost Constraints

In the real-world, there can be a cost cap associated with a job to be assigned.
To describe this, in addition to the capacity constraint, a job j can have a per
unit cost constraint dj associated with it. The overspending of completing j is
the difference between its actual cost and dj . Our objective of the scheduling
is not only to minimize the overall cost but also minimize the sum of the
possible overspendings.

To do this, we propose the following approach. We first find the max-flow
minimum interval cost as described in Algorithm 8. Let P = (p1, p2, p3, . . . , pm)
be paths from S to D of the flow with minimum total time costs and let t(pi)

180 Chenyi Hu and Ping Hu

be the interval cost associated with the path pi. We then sort these interval
costs for all paths and obtain t(p1) ≤ t(p2) ≤ · · · ≤ t(pm) in terms of the fuzzy
memberships. For n to-be-scheduled jobs, we can assume them in ascending
order according to their cost caps. Now, we can assign the jobs according to
their cost caps on sorted paths. We use a greedy approach to assign the job
with the least cost cap to the available path with minimum costs. We illustrate
the above ideas with the following example.

Example 3. Schedule three jobs j1, j2, and j3 on the interval cost flow network
illustrated in Figure 8.3. The capacity requirements and cost caps for the jobs
are f1 = 5, d1 = 21; f2 = 2, d2 = 14; and f3 = 6, d3 = 23, respectively.

[2, 4], 2
[6, 8], 5

[2, 4],5

[7, 9],7

[1, 3], 3

[9, 11], 7

[8, 10], 7

[3, 5], 3S
C

A

B

E D

Fig. 8.3. Example: Task scheduling.

The required capacity to schedule the jobs is f1 +f2 +f3 = 5+2+6 = 13.
We find that the maximum allowable flow of the network is 17. Hence, the
capacity constraint is satisfied. The paths and associated costs for the flow
are as follows:

• p1 : S → C → E → D with interval cost t(p1) = [2, 4] + [1, 3] + [3, 5] =
[6, 12] and f(p1) = 3.

• p2 : S → C → B → D with interval cost t(p2) = [2, 4] + [2, 4] + [9, 11] =
[13, 19] and f(p2) = 2.

• p3 : S → B → D with interval cost t(p3) = [6, 8] + [9, 11] = [15, 19] and
f(p3) = 5.

8 Interval-Weighted Graphs and Flow Networks 181

• p4 : S → A → D with interval cost t(p4) = [7, 9] + [8, 10] = [15, 19] and
f(p4) = 7.

We sort the paths according to their interval costs in the table below.

Path Cost Flux

p1: S-C-E-D [6, 12] 3
p2: S-C-B-D [13, 19] 2
p3: S-B-D [15,19] 5
p4: S-A-D [15,19] 7

We sort the jobs by their cost caps and get d2 < d1 < d3. Thus, we first
assign j2 on p1, which has the least cost. Now, p1 is left with only one unit
flow capacity available. We assign one unit of j1 on p1 and two units on each
of p2 and p3. Finally, we assign j3 on p3 with three units and on p4 with three
units. Since p3 and p4 have the same interval cost, of course, we can assign
all six units of j3 on p4. All tasks have been scheduled and meet the cost
constraint.

There are cases in which some constraints cannot be crisply satisfied. For
example, if one schedules ji to a path pj and di ∈ t(pj), then this assignment
has a possibility to pass the cost cap due to interval cost uncertainty of the
network. Applying the interval comparison operator that we defined earlier
in this chapter, we can find the fuzzy membership. Furthermore, by calculate
the center of gravity for such assignments, one can obtain a degree of belief
for the possible total overcosts.

8.5 Conclusions

In this chapter, we introduced interval-weighted graphs and capacity flow
networks that have broad applications in modeling real-world phenomena for
knowledge processing and decision making. By extending constant weight,
capacity, and cost to intervals, we are able to take interval uncertainty into
our considerations and hence make reasonable decisions computationally.

The fuzzy partial order relations for intervals defined in this chapter have
been the theoretical foundation for such extension. Using them, we can now
compare intervals with a degree of belief. Applying these fuzzy partial order
relations, we are able to find shortest paths and minimum spanning tree for
interval-weighted graph. Furthermore, by using intervals to model uncertain-
ties in capacity flow networks, we can find maximum flow and minimum cost
for decision making. In addition to applications presented in this chapter,
there should be more applications of the fuzzy partial order relations to other
areas in knowledge processing.

182 Chenyi Hu and Ping Hu

Acknowledgment: This work is partially supported by the U.S. National Sci-
ence Foundation under grants CISE/CCF-0202042 and CISE/CCF-0727798.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications
of the ACM 26(11), 832–843 (1983)

2. Bellman, R.: On a routing problem. Quarterly of Applied Mathemat-
ics 16(1), 87–90 (1958). URL http://wisl.ece.cornell.edu/ECE794/Jan29/

bellman1958.pdf

3. Bor◦uvka, O.: On a certain minimal problem. Práce pravslé př́ırodověcké
společnosti 3, 37-58 (1926)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959). URL http://jmvidal.cse.sc.edu/library/

dijkstra59a.pdf

5. Edmonds, J., Karp, R.: Theoretical improvements in the algorithmic efficiency
for network flow problems. ACM 19, 248–264 (1972)

6. Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially Or-
dered Sets. Wiley, New York (1985)

7. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton, NJ (1962)

8. Goodrich, M., Tamassia, R.: Algorithm Design: Foundations, Analysis, and In-
ternet Examples. Wiley, New York (2002)

9. Hu, P., Hu, C.: Fuzzy partial-order relations for intervals and interval weighted
graphs. In: Proceedings of Foundations of Computational Intelligence, pp. 120-
127 IEEE, New York (2007)

10. Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The
tractable subalgebras of Allen’s interval algebra. Journal of the Association for
Computing Machinery 50(5), 591–640 (2003)

11. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society 7(1), 48–
50 (1956)

12. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36, 1389–1401 (1957)

http://wisl.ece.cornell.edu/ECE794/Jan29/bellman1958.pdf
http://wisl.ece.cornell.edu/ECE794/Jan29/bellman1958.pdf
http://jmvidal.cse.sc.edu/library/dijkstra59a.pdf
http://jmvidal.cse.sc.edu/library/dijkstra59a.pdf

9

Arithmetic on Bounded Families of
Distributions: A DEnv Algorithm Tutorial

Daniel Berleant1, Gary Anderson2, and Chaim Goodman-Strauss3

1 Department of Information Science, University of Arkansas at Little Rock, 2801
S. University Avenue, AR 72204, USA. jdberleant@ualr.edu

2 Department of Applied Science, University of Arkansas at Little Rock, 2801 S.
University Avenue, Little Rock, AR, 72204, USA. gtanderson@ualr.edu

3 Department of Mathematics, University of Arkansas, Fayetteville, AR 72701,
USA. strauss@uark.edu

Monte Carlo analysis is traditionally used in risk analysis to model uncertainty
in the values of inputs of various kinds, such as initial conditions and variables.
Although Monte Carlo has proven useful, extensive experience has revealed
limitations in the technique. These limitations have motivated new techniques
that overcome those limitations. This chapter focuses on an alternative ap-
proach: the DEnv algorithm. We begin by briefly discussing limitations of
Monte Carlo simulation, followed by ways of attempting to address these lim-
itations within the Monte Carlo paradigm. Then we discuss the DEnv (from
Distribution Envelopes) algorithm, a technique for working with bounded
families of probability distributions.

9.1 Motivation: Monte Carlo Simulation and Its Limits

It is useful to start with a critical look at Monte Carlo simulation, because the
benefits of bounded families of distributions can best be appreciated in the
context of the limitations of the traditional Monte Carlo method. There are
two limitations that are especially significant in motivating use of bounded
families of distributions in certain problems. These are described in the next
two subsections.

9.1.1 When Knowledge Is Insufficient to Specify a Probability
Distribution for a Model Variable

If some variable is uncertain, that uncertainty can often be modeled with
a distribution function. However, if insufficient information exists to specify
the exact shape of that distribution function, it is impossible to draw the
samples needed by Monte Carlo simulation, unless either some distribution is

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 9, c© Springer-Verlag London Limited 2008

jdberleant@ualr.edu
gtanderson@ualr.edu
strauss@uark.edu

184 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

arbitrarily assumed to apply or the variable is described by an interval instead
of a distribution function. An arbitrary distribution (e.g., a normal or “bell”
curve) might be assigned to a variable so that samples could be drawn from
it, but although this would enable Monte Carlo analysis to proceed, the cost
would be in making an unjustified assumption about the variable. Unjustified
assumptions about model variables tend to imply results that, literally, are
also unjustified.

To get justifiable results, given a variable with an unknown distribution,
one might choose to bound it by using an interval to describe its range (possi-
bly excluding the tails of the distribution if such a move is reasonable given the
problem). Then this interval could be sampled, leading to results that bound
the range of values of the outputs. However an interval is a relatively weak
characterization of a variable that ignores information that may be available,
such as variance and mean, that could potentially be used to help characterize
the outputs.

Let us consider two examples. In the first, the information available is
insufficient to specify a single distribution. In the second, an interval is suitable
for describing uncertainty about the available information.

Example 1. Kolmogorov in [13] showed that a distribution obtained from a
limited number of data points is likely to be significantly wrong and that
confidence limits (in the form of bounds around the nominal distribution
defined by the data) are more appropriate. Figure 9.1 shows an example of a
distribution function and its confidence limits. Frame A, at the top, shows a
cumulative distribution obtained from a set of data points. The s-curve shown
rises unevenly due (one might reasonably speculate) to random noise in the
data, although, in principle, the unevenness might actually accurately reflect
the underlying random variable. Frame C, at the bottom, shows probability
bounds that describe the confidence limits of the curve of frame A at the
0.9 probability level. The true distribution (which could be obtained from a
limitless number of sample data) will fall within the bounds of the confidence
limits with a probability of 0.9. Put another way, there is a 0.1 probability
that the true distribution will cross outside the enveloping bounds shown at
least once.

Example 2. A manufacturer of thermostats or some other measurement or
control device might state limits on the measurement error and the controlled
quantity. In this instance, information exists about the range of a variable but
not about its distribution within that range. Intervals would be appropriate
here for expressing uncertainty because they state lower and upper bounds.
Continuing the thermostat case, if the temperature setting s is 67◦, the man-
ufacturer states that settings are accurate to ±1◦, and the manufacturer also
specifies a hysteresis of ±1◦ (i.e., the heater turns on at s−1 = 66◦ and turns
off at s + 1 = 68◦), then the actual temperature can be inferred to be within
(67± 1± 1)◦, or [65, 69]◦. However its distribution within that range cannot
be determined.

9 Bounded Families of Distributions 185

Fig. 9.1. A distribution derived from data, top, and its confidence limits, bottom
(from [2].

9.1.2 Lack of Full Knowledge About the Dependency
Relationships Among Variables

Suppose two variables have no significant relation to each other. For exam-
ple, the price of oranges has no significant relation to the number of sunny
days per year in Seattle, WA, USA. If distribution functions are available for
both variables, each may be sampled to provide pairs of numbers to use in
a simulation model, without fear that the value of a sample of one variable
affects the distribution function that should be used to generate samples of
the second variable. This is convenient both in implementability and in ease
of modeling.

Another convenient situation is if the value of one variable completely
determines the value of a second variable. For example, the number of sunny
days per year completely determines the number of nonsunny days per year,
and both values might be used in a simulation model of, say, utilization of
tourist attractions (of which some would be more attractive on sunny days
and others on nonsunny days). In this situation a sample drawn from one
variable determines the sample to use of the other, and a simulation requiring
both variables is both relatively simple and implementable.

However, a third situation often occurs that presents a problem. For exam-
ple, an agricultural model of production might incorporate as variables both
the price of the product and the number of sunny days in growing areas. It is
likely that the values of those variables will be related in some way (i.e., not
independent) but that this dependency is less than total (i.e., the value of one

186 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

does not fully determine the other). Unless the joint probability distribution
is known, which amounts to knowing exactly what distribution to sample for
one variable given what value was sampled for the other, it is not possible in
general to properly generate a sample value of one variable given a sample
value of the other.

9.1.3 Overcoming the Limitations of Monte Carlo While Staying
Within the Paradigm

Let us look at how the Monte Carlo approach may be made usable in situa-
tions in which the just-mentioned two limitations occur. Later this will help
illustrate the advantages of a better approach, bounded families of distribu-
tions. The next two subsections address the two limitations.

Knowledge insufficient to specify the probability distribution of a model
variable

Often a generic “reasonable” distribution will be used to model such a variable
(e.g., a normal distribution). This permits a Monte Carlo model to be fully
specified and therefore a simulation to be run. However, such an unjustified
assumption about a model variable of course decreases the dependability of
conclusions drawn from simulating the model.

Because potentially untrue assumptions can lead to problematic conclu-
sions, we might wish to express only actual facts about variables. For example,
we might model variables as intervals (i.e., ranges extending from minimum
to maximum plausible values). If we expressed all variables this way, then a
Monte Carlo simulation could be performed based on picking sample points
randomly within those intervals for each simulation run. The results from
many simulation runs would then be combined to give intervals describing
ranges for the outputs. Unfortunately, it would say nothing about the shapes
of their distributions, merely giving estimates of the ranges of their supports.

What if only some variables needed to be described using intervals be-
cause distributions were available for the others? Simulating Monte Carlo
models that mix some variables that are interval-valued and others that are
distribution-function-valued is less straightforward than if all were intervals
or all were distributions. It would be easier to substitute, for each distribution
in such a mixed model, an interval bounding the range of values permitted
by the distribution. A disadvantage of this approach is that using intervals
for variables for which distribution functions are known means ignoring avail-
able information. Although the conclusions drawn may be sufficient in some
situations, they will tend to be weaker than if the distribution information
available was used instead of ignored.

Example 3. We model whether a robotic vehicle can pull a cart containing
cargo up a slope without its wheels slipping against the slope surface (Fig.

9 Bounded Families of Distributions 187

9.2), rendering it unable to complete its task [1]. This example can be applied
to specific situations such as a robot moving cargo from an airplane drop to
a central location, cargo transportation in rough and/or dangerous terrain,
autonomous construction of bridges or other structures, and so on.

Fig. 9.2. Pioneer AT robot pulling a loaded cart up a hill.

The frictional force between the surface and the drive wheels of the robot
must exceed the gravitational force pulling the cart down the incline (see Fig.
9.2). The force of gravity on the cart is mcart ∗g∗sin θ. Let us assume that the
weight of the cargo-carrying cart is much higher than that of the robot. Then
the force of friction on the wheels of the robot is µfriction ∗mrobot ∗ g ∗ cos θ.
So, for the robot to successfully pull the cart up the incline requires that

µfriction ∗mrobot ∗ g ∗ cos θ > mcart ∗ g ∗ sin θ.

In other words,

mrobot >
(mcart ∗ tan θ)

µfriction

must hold. Given mrobot, the unknowns are µfriction,mcart, and θ. These
might be roughly estimated visually and from experience by the robot: mcart

from the size of the cargo; µfriction by the color and glossiness of the incline’s
surface; and θ from stereo vision estimates of its depth at the top and bottom.
These estimates, however, will have large uncertainties associated with them.
Consider just one of these unknowns, mcart, and define mcart = mvehicle +

188 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

mcargo. Based on the manufacturer’s specifications and known variabilities
(e.g., how worn the tires are), mvehicle is likely to be known within an interval,
such as k±10% for some k. Given a sufficiently sized database of actual robot
missions, mcargo could be represented by a probability distribution. Therefore,
to calculate mcart, one must add two quantities, one of which is an interval
and the other a distribution. An easy way to do this is to substitute a second
interval for the distribution, thereby making the sum easy to calculate but
losing potentially valuable information. Another easy way out would be to
substitute a conjectured distribution for the interval, such as a triangular
distribution with mode k. However, this has another problem, which is that
the results of a simulation based on this model would be undependable because
it uses a distribution that is merely a conjecture. The ideal approach would be
to add an interval and a distribution. The problem is that a Monte Carlo model
is not well suited to such a situation. In general it would require combining
multiple Monte Carlo simulations, one for each of a random sample of values
from the interval. (Well-behaved models could be handled by sampling only
the endpoints of the interval.)

Lack of Knowledge About the Precise Nature of the Dependency
Relationships Among Model Variables

The Monte Carlo approach may proceed straightforwardly if variables are
assumed independent. However, if variables are not known for sure to actually
be independent, resulting conclusions can be suspect. This is illustrated by
the following example.

Example 4. Consider the case of a model with two uncertain variables that
must be combined. Some bat populations have suffered fluctuations in popu-
lation in recent years due to such factors as pesticides in their diet of insects,
other human disturbance of habitats, and perhaps other poorly understood
factors. In order to estimate the number of bats of a particular species in
a particular area that will be present 1 year from now, one can add to the
current population the product of the current population and the growth
rate (a negative growth rate would signify a decline in population). Neither
the current population nor the growth rate is likely to be known accurately
and, therefore, might be better modeled using distributions than point values.
Thus, we would have to multiply two distributions together to get an estimate
of next year’s population. Furthermore, the dependency relationship between
these two distributions is unknown. They could be completely independent
(which could lead to eventual extinction for negative growth rates). Alter-
natively, they could be positively correlated. This can occur in populations
that are sufficiently low to be marginally viable. In that case, an increase in
population can cause an increase in growth rate. Finally, it is possible for
population and growth rate to be negatively correlated. This can occur, for
example, when a population approaches the limit of the ability of the envi-
ronment to support it, at which point individuals are forced into competition

9 Bounded Families of Distributions 189

with each other for food and perhaps other resources, making it harder for
them to survive and reproduce.

Thus, a model might specify distribution functions for population and
growth rate, but the dependency relationship between the two distribution
functions may be unknown. What, then, can be said about the product of
population and growth rate and hence about the population in a year? If we
assumed the distributions were independent, then the result of multiplying
them would be some distribution. On the other hand, if we assumed the
distributions were completely correlated (so a higher value for one implied a
correspondingly higher value for the other), or negatively correlated (a higher
value for one implied a correspondingly lower value for the other), then the
result in each case would again be some distinct distribution.

Since we cannot justify any particular dependency relationship in this
example, the result could be any of a family of distributions, each one cor-
responding to some dependency relationship - whether simple or complex -
between the variables. Then the family of all possible result distributions,
which includes independence, full positive and negative correlation, and all
other dependency relationships, may be expressed using a bounded family of
distributions to represent the space within which each member of that in-
finitely numerous family must be [3].

The sensitivity of any conclusions to an independence assumption can be
checked, to a degree, by also running a Monte Carlo simulation on the problem
under the assumption that the variables are perfectly positively correlated, as
well as under the assumption that some are perfectly negatively correlated
with others. These different assumptions, representing extremes of possible
dependencies, will lead to possibly differing conclusions (although not nec-
essarily to extremes within the space of conclusions implied by the space of
possible dependencies; see Ferson et al. [9]). This will help test the sensitivity
of the conclusions to assumptions about dependency.

The trustworthiness of a Monte Carlo simulation will generally be ben-
efited when the dependencies among the variables are known. Correlations
might be known even when full details of dependencies are not. If a corre-
lation between two variables is positive, then a relatively high sample value
for one variable would typically increase the probability of a relatively high
sample value of the other variable. Similarly, a negative correlation would typ-
ically increase the probability of drawing a relatively low value of the other
variable. The term “typically” applies because a positive correlation can hide
a tendency for some high values of one variable to occur with low values of the
other, if that tendency is overcompensated by a tendency for other high val-
ues of one to occur with high values of the other [9]. Even when correlation is
known and modeled, underlying details about a dependency relationship that
are hidden by the crude measure of correlation could impact the validity of
the model and hence dependability of the results of a Monte Carlo simulation.

190 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

9.2 How Bounded Families of Distributions Can Help

We have just described how Monte Carlo simulation can be facilitated through
unsupported assumptions (modeling an interval as a distribution or assum-
ing a dependency relationship), or discarding information (as when model-
ing a distribution with an interval), or kludgey second-order modifications of
the clean classical Monte Carlo approach. Ideally though, elegant techniques
would be used that do not lead to reductions in information quality [17]). The
approach described next, the DEnv technique, meets that requirement.

We begin by reviewing salient features of probability distributions. Because
of their familiarity, they form a convenient lead-in to a discussion of bounded
families of distributions.

The probability is 0 that a sample drawn from a probability density func-
tion will be less than the lowest value in its support, and it is 1 that it will
be no greater than the greatest value in its support (Fig. 9.3). More gener-
ally, the probability that a sample will not exceed a specific value increases
as the value specified increases. Based on that observation, a curve that plots
probability against progressively increasing given values is called a cumulative
distribution function (CDF), often abbreviated simply as “distribution” (Fig.
9.3b).

Fig. 9.3. A probability density function (PDF) and its corresponding cumulative
distribution function (CDF). A CDF describes the cumulative area under its corre-
sponding PDF, rising to a final value of 1. The capacity of these isomorphic repre-
sentations to describe uncertainty is limited, motivating more general methods.

9 Bounded Families of Distributions 191

What happens if something can be said about a density function but not
enough to specify it fully? For example, the mean and variance might be
known, but not the detailed form of the curve. In such a situation, a family of
different density functions conforms to the limited information we have about
it. Almost any density function can be shifted right or left until its mean is
a given value and then stretched or compressed around the mean to adjust
its variance to another given value. Such a family of curves, if many were
superposed, would form a jumble and be difficult to work with. Fortunately,
this apparent jumble can be expressed in the more visualizable way discussed
next.

9.3 Bounded Families of Distributions

If we integrate each member of a family of density functions to get a cor-
responding family of distributions, it is considerably easier to visualize and
work with. Figure 9.4 shows envelopes bounding a family of distributions.
This family corresponds to the family of all density functions with a given
mean and variance. The envelopes shown, one bounding the family on the left
and one on the right, are the bounds on this family of distributions.

Fig. 9.4. Bounds around the family of cumulative distributions with mean 10 and
variance 5. All such CDFs fall within these bounds, and some CDF in the family
touches any given point on each bound. However, the bounding envelope curves do
not themselves have mean 10 and variance 5. (The tails taper off to ±∞, not shown.)

192 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

Clearly, distribution family envelopes provide easily visualized bounds on
the space through which members of the family can travel. Therefore, they
also implicitly bound the corresponding family of density functions, which, as
noted, is not as easy to visualize directly.

Let us next show that bounded distribution families enable a general strat-
egy for circumventing the problems of traditional Monte Carlo simulation de-
scribed earlier. What is needed is a representation for uncertainty that can
(1) express intervals, distributions, and families of distributions and (2) ma-
nipulate model variables thus represented.

1. Expressing intervals, distributions, and bounded families of distributions.
All of these can be expressed using bounded distribution families as a
unifying representation, as we see next.
a) Families of distributions are described using bounds as explained ear-

lier. In principle, there are families that cannot be described with
bounds (e.g., the family of all density functions with a single impulse
and zero density everywhere else). In practice, bounding envelopes can
represent the kinds of family of distributions that seem to typically
arise in practice.

b) Distributions are described using bounding envelopes easily, because a
distribution is simply a family of distributions with one member. The
appropriate bounds consist of a left envelope and a right envelope that
are identical and equal to the distribution in question.

c) Intervals are easily described using bounded distribution families. A
variable restricted to be within an interval [x, x] has a density function
with zero density for values below x or above x. Therefore, any density
function that integrates from 0 to 1 over the interval is in the family
of distributions consistent with the interval. The extremes giving the
left and right envelopes of the corresponding distribution family are
therefore a density function with an impulse at x and zero density
everywhere else and a density function with an impulse at x and zero
density everywhere else. See Figure 9.5.

2. Manipulating model variables that may be intervals, distributions, or fam-
ilies of distributions. Once the variables we wish to manipulate (e.g., by
adding them together, or subtracting, multiplying, dividing, or applying
some other binary function to them) are all expressed as bounded fam-
ilies of distributions, we need no more than a method of manipulating
these bounded families. In other words, the conceptual differences among
intervals, distributions, and distribution families become irrelevant to the
manipulation method. We address such a method next.

9 Bounded Families of Distributions 193

Fig. 9.5. Bounded family of distributions whose left and right envelopes (shown
with dots and dashes, respectively) represent the interval [x, x] (with low bound x
and high bound x).

9.4 Arithmetic Operations on Bounded Families of
Distributions

We begin by showing how to apply a binary operation (e.g., addition) to
variables when one is a distribution and the other is an interval. We will then
extend the ideas to the other three cases of interest: one variable an interval
and the other a bounded family of distributions, one a distribution and the
other a bounded family, and both bounded families.

Consider the case where one variable is described using a distribution
function and another is less well characterized, being described only by an
interval describing its range of plausible values. The presence of a variable x
described by an interval typically prevents representing the sum, product, and
so on of x and some distribution, as a distribution. As Figure 9.6 shows, each
possible value of the interval, when combined with the distribution leads to a
distinct distribution for the output variable. Each distinct distribution is the
distribution of the sum, given some particular sample value from the interval.
The result is a family of distributions, one for each value in the interval. This
family may be bounded with envelopes.

Up to this point, bounded distribution families have been illustrated - liter-
ally - graphically. But computer software for working with these families needs
to represent them using numbers instead. The next section presents a method
for calculating with bounded distribution families that can be implemented
in computer software.

194 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

Fig. 9.6. The distribution farthest to the left is added to the interval [0.228, 0.421].
The result is the bounded family of distributions on the right, of which the left and
right envelopes and five example interior members are shown. In this situation none
of members of the family cross each other (but in other situations, they do).

9.5 A Numerical Approach to Computing with Bounded
Distribution Families

A suitable way to work with bounded families of distributions on computers
uses sets of intervals associated with probabilities. An interval, for this purpose,
is a range described by its low and high endpoints. The interval containing all
numbers from 2 through 9.8, for example, is written [2, 9.8]. In this approach,
each interval is associated with the probability that a sample value of a random
variable will belong to that interval. Graphically, a rectangle can be placed
on the x-axis with its left and right sides at the low and high bounds of
the interval, which has area = probability, so height = area/width. Figure
9.7 shows an example of a set of intervals with associated probabilities, its
rectangles, and its bounded distribution family.

The rectangles are misleading in an important respect: They suggest that
the distribution of probability for a given interval is uniform, because the
interval and its probability are depicted using a rectangle with a flat top.
In fact, no constraint on how probability is distributed within an interval is
intended. At one extreme, probabilities might be concentrated as impulses
at the low bounds of their intervals (i.e., at the left sides of the rectangles).
Then the distribution family envelope curve will rise suddenly at the low
bound of each interval (see the left staircase curve of Fig. 9.7), yielding the
left envelope of a bounded distribution family, which is the fastest-rising curve

9 Bounded Families of Distributions 195

A partially specified distribution

{p([1,4]) = 0.15

p([4,5]) = 0.15

p([7,8]) = 0.25

p([7.5,11])= 0.25

p([9,10]) = 0.2

}

Fig. 9.7. An underspecified distribution consisting of a set of intervals and their
associated probabilities, the corresponding rectangles, and the bounded distribution
family.

that is consistent with the set of intervals and their probabilities. The opposite
extreme would be to concentrate the probabilities at the high bounds of their
corresponding intervals. Then the cumulative curve will rise suddenly at the
high bounds of the intervals yielding a staircase curve that is the right-hand
envelope of the bounded distribution family.

The left and right staircase-shaped envelope curves are bounding in that
all curves that result from distributions of probabilities within their associated
intervals travel between the two envelopes, never crossing them.

For example, Figure 9.8 shows envelopes and two other distributions that
are consistent with those envelopes. One distribution has three straight seg-
ments, each corresponding to a uniform distribution within one of the his-
togram bars in the inset. Thus, when the probability of each interval is dis-
tributed uniformly over the interval (as suggested by the flat tops of the his-
togram bars in the inset), the cumulation rises in a series of connected, non-

196 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

vertical line segments between the envelopes (dark middle curve). The smooth
s-curve also shown between the envelopes corresponds to some smooth den-
sity function that the histogram discretizes. Such a density function is shown
superposed on the histogram.

Fig. 9.8. Left and right staircase-shaped envelopes. In general, these envelopes
may touch at one or more points, but they never cross. Within those bounds, two
CDFs are shown: one composed of three straight line segments and one an s-curve.
The inset shows rectangles arranged in a histogram and, superposed, an example of
a density function that the histogram discretizes.

Showing distribution family bounds avoids problems with collections of
rectangles, such as flat tops, which are misleading in seeming to suggest that
probabilities are distributed uniformly over their intervals. Another poten-
tially misleading visual characteristic of rectangle collections is that rectangles
that overlap may lead to ambiguity regarding the identities of the intervals
underlying them.

Although showing rectangles has limitations, so does showing bounding
envelopes. Different sets of intervals and their probabilities can yield the same
envelopes. For example, consider the sets S1 and S2:

S1 = {p([1, 4]) = 0.5, p([2, 3]) = 0.5},
S2 = {p([1, 3]) = 0.5, p([2, 4]) = 0.5}.

In both of those sets, the extreme case of concentrating probabilities at the
low bounds of their intervals yields two impulses: one at 1 and the other at 2.
The other extreme case, concentrating the probabilities at the high bounds of

9 Bounded Families of Distributions 197

the intervals, also yields two impulses, one at 3 and the other at 4. Thus, the
envelopes for S1 and S2 are identical. Yet, a random variable governed by S1

can lead to different results than one governed by S2. See Section 3.1 of [4]
for a fuller discussion.

9.6 Discretization and Bounded Families of Distributions

Envelopes can be used for representing intervals, distributions, and bounded
families of distributions. Also, we have been building the case that a suitable
underlying data structure for expressing a pair of envelopes is a set of intervals
and their associated probabilities. To further make this case requires address-
ing how to express smoothly curving distributions and envelopes using these
sets. Intervals have definite endpoints and, graphically, sets of them yield left
and right, sharply angled staircase like envelope curves. These are decidedly
not smoothly curving. Yet, sets of intervals and probabilities can be used for
representing smoothly curving envelopes as well. Figure 9.8 inset, shows a
coarse discretization (three rectangles forming a histogram) of a curved den-
sity function. Histograms will approximate a probability density curve better
as the number of histogram bars increases and their widths decrease. In cu-
mulative terms, a distribution will be better approximated by its enclosing
staircase shaped envelopes the more steps the envelopes possess. See Figure
9.9.

At this point we have introduced families of distributions with three alter-
native representations: (1) sets of intervals and probabilities, (2) rectangles,
and (3) envelopes. The sets of intervals and probabilities are the underlying,
computer-friendly specification, whereas rectangles and envelopes are human-
friendly and derivable from the sets. We have not yet shown, however, how to
take two different variables, each a bounded family of distributions, and add,
subtract, multiply, or divide them or perform some other binary operation on
them. This is discussed in the next section.

9.7 Computing with Bounded Distribution Families

We introduce how to do arithmetic computations on bounded distribution
families using an example with a typical structure but artificial data.

Example 5. Consider the goal of finding out what can be determined about
the total amount of some pesticide released into the environment worldwide.
Model this total as C, where C = A+B, A is the amount contributed by U.S.
agriculture, and B is the amount contributed by all other countries. The exact
values of A and B are unknown, but we assume that distributions for them
are available. We can discretize such distributions visually as histograms or
as left and right envelopes (similar to those in Fig. 9.9), or alternatively for

198 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

Fig. 9.9. Two discretizations of the same distribution, a light-colored pair of en-
velopes with 4 steps each, and a dark pair with 64. Each bar of a histogram that
discretizes a density function corresponds in the world of distributions (the integrals
of density functions) to a box, of which the north and east sides are formed by the
left envelope and the south and west sides are formed by the right envelope.

computational purposes as sets of intervals and their probabilities. Table 9.1
shows the description in terms of intervals and probabilities.

A B

p(A in [10,11])=0.1 p(B in [5,6])=0.05

p(A in [11,12])=0.2 p(B in [6,7])=0.06

p(A in [12,13])=0.4 p(B in [7,8])=0.08

p(A in [13,14])=0.2 p(B in [8,9])=0.1

p(A in [14,15])=0.1 p(B in [9,10])=0.21

p(B in [10,11])=0.21

p(B in [11,12])=0.1

p(B in [12,13])=0.08

p(B in [13,14])=0.06

p(B in [14,15])=0.05

Table 9.1. The distribution functions describing the amounts contributed by pes-
ticide sources A and B have been discretized and are shown symbolically as sets of
intervals with associated probabilities.

9 Bounded Families of Distributions 199

To compute A + B to get the total amount of pesticide released, consider
that for any plausible value of A, B might potentially have any value permitted
by its distribution. In terms of the intervals of Table 9.1, we add each interval
in A to each interval in B to get 5 ∗ 10 = 50 new intervals, and we calculate
a probability for each of the new intervals, resulting in a set of intervals and
their probabilities for C = A + B. Thus, if A is in [10, 11] and B is in [5, 6],
then C would be in [10, 11]+ [5, 6] = [15, 17]. Similarly, we can get an interval
describing the value of C given A in any of its 5 intervals and B in any of its
10 intervals. See Table 9.2.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1

Table 9.2. Intervals for A are shown down the left, for B across the top, and for
C = A + B in the interior cells. For example, when A ∈ [10, 11] and B ∈ [5, 6], then
A + B ∈ [15, 17], and so on.

What about the probabilities associated with the interior cells of the table?
These are not shown in the table because they vary for different dependency
relationships between A and B.

We will call a table like Table 9.2 a joint distribution tableau. It shows the
ranges of intervals for C = A + B for all of the combinations of intervals in A
and B. The probabilities associated with those intervals for C are constrained
by the marginal probabilities, as shown in the first row and column, but
are not fully determined because there is no information available about the
dependency relationship between A and B. If A and B were independent,
the probabilities of the interior cells would be the product of their marginal
probabilities. However, A and B might not be independent. For example,
heavy use of the pesticide in the United States might positively correlate with
heavy use elsewhere due to similar judgments of farmers worldwide. On the
other hand, if overall supply was limited, then heavy use in one country would
limit its use elsewhere, a negative correlation. Each dependency relationship
results in some distribution for C. We wish to construct the left and right
envelopes around the family of all distributions plausible for C. Let us consider
next a few selected values of the left and right envelopes bounding C = A+B,
starting with the left envelope.

200 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

9.7.1 Left Envelope

C = 14: There is no way for A + B to be as low as 14 no matter which of
the possible values of A and B occur. Indeed, the lowest possible value of
A + B is 15, which would only occur if A and B were both at their minimum
possible values of 10 and 5, respectively. Thus the left envelope height is zero
at C = 14 (and all other values of C below 15). For the same reason, this is
also true of the right envelope.

C = 15: The only way C can be 15 is if A = 10 and B = 5, which
occurs only for the top left cell in the interior of the table. The probabilities
in all of the interior cells in the row containing that cell sum to 0.1, because
that is the marginal probability for A ∈ [10, 11]. Similarly, the probabilities
associated with all of the interior cells in the column holding this cell must
sum to 0.05 because that is the marginal probability for B ∈ [5, 6]. This puts
an upper bound on the probability associated with the top left interior cell,
of min(0.05, 0.1) = 0.05. Some dependency relationship between A and B
might be associated with such an assignment of probability to that cell but
no dependency relationship can exist for which that probability would exceed
0.05. One might guess that this upper bound of 0.05 is not achievable because
of a putative need to reserve some of the 0.05 marginal probability to distribute
among other cells in that column. However, simply filling in probability values
in the table by hand and adjusting them by trial and error reveals that in this
case, the full 0.05 probability can be allocated to the top left interior cell
(Table 9.3). Later we will discuss allocating probabilities automatically.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p = .05 p = .05 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p = 0 p = .01 p = 0.08 p = .1 p = .01 p = 0 p = 0 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p = 0 p = 0 p = 0 p = 0 p = .2 p = 0.2 p = 0 p = 0 p = 0 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = .1 p = .08 p = .02 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0.01 p = 0 p = 0 p = .04 p = .05

Table 9.3. Joint distribution tableau for C = A+B. Each interior cell shows a range
and probability for C associated with an interval and probability for B at the head
of its column and for A at the head of its row. Many other probability asignments
are also possible, corresponding to different dependencies between A and B.

Thus, the left envelope jumps from 0 to 0.05 at C = 15. This value cannot
rise further until C = 16 because at that value for C, other interior cells
associated with other ranges of A and B can contribute their probabilities to
the ways in which C can be 16, as described next.

C = 16: The three cells whose summed probability we need to maximize
in this case are the top left interior cell (call it the corner cell for now), the

9 Bounded Families of Distributions 201

cell to its right, and the cell below it. As in the previous case, the leftmost
interior column probabilities must add to p(B = [5, 6]) = 0.05. Also, the
second column of interior cells must add up to 0.06. Both of those marginal
probabilities can be distributed among just those three cells, leaving other
interior cells in the two leftmost columns with zero probabilities. This maxi-
mizes the summed probability of those three cells at 0.11. Manual inspection
of the problem is one way to reveal that such an allocation is possible (Table
9.4). This maximum probability of 0.11 applies for values of C from 16 up to
17, at which point other interior cells can contribute their probabilities to the
ways in which C can be 17.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p = .04 p = .06 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p = .01 p = 0 p = .08 p = .1 p = .01 p = 0 p = 0 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p = 0 p = 0 p = 0 p = 0 p = 0 p = .21 p = .1 p = .08 p = .01 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p = 0 p = 0 p = 0 p = 0 p = .2 p = 0 p = 0 p = 0 p = 0 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = .05 p = .05

Table 9.4. Three interior cells contribute to the cumulative probability p(C ≤ 16).
These are clustered in the upper left.

C = 17: To get the value of the left envelope at this value, we need to
maximize the sum of the probabilities in six cells (clustered in the top left
area of Table 9.5) whose intervals contain any values equal to 17 or less. Table
9.5 manages to allocate probabilities so that all of the probabilities in the first
three interior columns are allocated within those six cells. The sum of the
probabilities associated with those cells, 0.19, is maximal because any more
probability would violate the constraints imposed by the marginal values of
probability for B shown along the top of the table. This maximized probability
applies over 17 ≤ C < 18.

We can continue to work out the values of the left envelope for higher
and higher values of C, but a näıve, pencil-and-paper approach gets unwieldy
for mid-range values of C. Furthermore, computers do not use pencil and pa-
per but require a well-defined procedure. Before discussing such a procedure,
however, let us get a start on the right envelope, illustrating its nature as the
dual of the left.

9.7.2 Right Envelope

C = 21 − ε: To get the cumulative probability defining a y-axis value of a
point on the right bounding envelope of C, we must minimize the sum of
the probabilities associated with interior cells whose interval high bounds are

202 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p =0 p =0 p =.08 p = .02 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p =0 p =.06 p = 0 p = .08 p = .06 p = 0 p = 0 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p =.05 p = 0 p = 0 p = 0 p = .15 p = .2 p = 0 p = 0 p = 0 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p = 0 p = 0 p = 0 p = 0 p = 0 p = .01 p = .1 p = .08 p = .01 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = .05 p = .05

Table 9.5. The cumulative probability for C ≤ 17 is maximized by assigning prob-
abilities to interior cells as shown. The probabilities contributing to the sum are
bold. The full marginal probabilities of those columns may be assigned to the
three interior cells holding the interval [17, 19], so their summed probability of
0.05 + 0.06 + 0.08 = 0.19 is the maximum possible cumulation at C = 17.

below C and that therefore must contribute all of their probability to the
cumulation. Every other interior cell holds an interval with a high bound
above C, and so either cannot contribute probability to C (if its low bound is
also above C) or might not contribute probability to C (because its probability
could be concentrated at its high bound, which is above C even though its
low bound is below C).

Table 9.6 shows an allocation of probabilities to interior cells that mini-
mizes the sum of probabilities in cells whose intervals have high bounds below
21 and whose probabilities must therefore contribute to the accumulated prob-
ability at C = 21− ε for small enough ε. In this case, the summed probability
can be as low as zero, as the table illustrates.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p =0 p =0 p =0 p =0 p = .01 p = .01 p = 0 p = .08 p = 0 p = 0
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p =0 p =0 p =0 p = .1 p = 0 p = 0 p = .1 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p =0 p =0 p = 0 p = 0 p = .2 p = .2 p = 0 p = 0 p = 0 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p =0 p = .06 p = .08 p = 0 p = 0 p = 0 p = 0 p = 0 p = .06 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p = .05 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = .05

Table 9.6. An allocation of probabilities to interior cells that minimizes the accu-
mulated probability at C = 21− ε. The relevant cells are those with intervals whose
high bounds are below 21. This comprises 10 cells clustered in the upper left of the
table. All of these can contain 0 probability while maintaining consistency with the
marginal probabilities for A and B, so the minimum summed probability is zero.

C = 21: The minimum cumulative probability at C = 21 consists of the
minimum possible sum of the probabilities of cells whose intervals have high

9 Bounded Families of Distributions 203

bounds of 21 or less. This value is 0.05, because the set of cells whose summed
probabilities is to be minimized includes the entire first column (which is
constrained by the marginal probabilities of B to contain a total probability
of 0.05 within its cells), and the table can be arranged so no other probability
is allocated within the set of cells in question. Table 9.7 illustrates a way to
do this.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p =.05 p =0 p =0 p =0 p =0 p = 0 p = 0 p = 0 p = 0 p = .05
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p =0 p =0 p =0 p =0 p = .2 p = 0 p = 0 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p =0 p =0 p =0 p = .1 p = 0 p = .2 p = .1 p = 0 p = 0 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p =0 p =0 p = .04 p = 0 p = .01 p = .01 p = 0 p = .08 p = .06 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p =0 p = .06 p = .04 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0

Table 9.7. Minimized cumulative probability for C = 21. This requires minimizing
the summed probabilities of 15 interior cells in the upper left region of the table.
These are the cells containing intervals with high bounds at or below 21.

This manual process of minimizing cumulated probability for different val-
ues of C (for the right bounding curve) and maximizing it (for the left), if con-
tinued, can produce the complete left and right envelopes. However, a method
that can be done by computer is desirable. Such a method is described next.

9.8 Finding Points on the Bounding Envelopes with
Linear Programming

As the previous section explained, to find the y-axis probability value of a
point on the left or right envelope for a given x-axis value, we must maxi-
mize or minimize the sum of the probabilities of some subset of the interior
cells in a joint distribution tableau. The probabilities in such tables express
a kind of discretized joint probability distribution of two random variables.
The marginals of these tables constrain how the probabilities of the interior
cells can be allocated during the process of maximizing or minimizing a sum
of a subset of them. Specifically, the marginal probabilities impose a value on
the sum of the probabilities of the interior cells in each column, as well as on
the sum of the probabilities of the interior cells in each row. These marginal
values are givens (see tables of previous section).

The preceding paragraph summarizes the need to maximize or minimize
a sum given other, constant sums. This type of situation lends itself to lin-
ear programming, a widely used technique. Numerous software packages,

204 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

commercial and public domain, exist for solving linear programming prob-
lems. Computer program listings for this are even printed in books. Therefore,
rather than describe linear programming algorithms, we show how to set up a
linear programming problem whose solution is a maximized value giving the
y coordinate of a left or right envelope for some x-axis value. We can assume
maximization because when the objective is to minimize the summed prob-
abilities of some interior cells, we can simply maximize the sum of the other
interior cells, and subtract that value from 1.

The desired linear programming problem consists of the constraints and
the sum to be maximized (the objective function, in linear programming ter-
minology). For illustration, consider a simpler joint distribution tableau than
the one used in the previous section (Table 9.8).

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p = 1

4
p = p =

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p = 1

2
p = p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p = 1

2
p = 1

2

Table 9.8. A joint distribution tableau showing marginals X and Y and interior
cells showing intervals for product XY . Probabilities for the interior cells are left
blank because they are not fully determined.

In Table 9.8 the probabilities in the interior cells (which spread out from
the northeast corner of the table) are left out because they depend on the
dependency relationship between X and Y . Thus, they are variable, although
constrained to some degree by the marginal probabilities shown on the left
and along the bottom. Linear programming can identify specific probabilities
for those interior cells that are (1) consistent with the marginal constraints,
and (2) maximize the summed probabilities of any given subset of interior
cells.

To solve maximization problems such as these by linear programming, one
initializes by assigning feasible values to the variables, which in this case are
the interior cell probabilities. These values serve as a starting point from which
the linear programming process will automatically find an optimal (maximiz-
ing) allocation of probabilities. An initialization method is illustrated next in
the joint distribution tableau of Table 9.8.

1. Identify the row with the highest marginal probability, the column with
the highest marginal probability, and the interior cell at the intersection
of that row and column. The interval in this cell is emphasized in Table

9 Bounded Families of Distributions 205

9.9. (In this case, both columns have the same marginal probability, so
the first one was chosen.)

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p = 1

4
p = p =

Y ∈ [3, 4] XY ∈[3, 8] XY ∈ [6, 16]
p = 1

2
p = p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p = 1

2
p = 1

2

Table 9.9. XY ∈ [3, 8] is chosen as the location for an initial probability assignment.

2. Assign to the identified cell the maximum probability consistent with the
row and column marginal constraints affecting it. This is the lesser of the
row and column marginal probabilities. See Table 9.10.

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p = 1

4
p = p =

Y ∈ [3, 4] XY ∈[3, 8] XY ∈ [6, 16]
p = 1

2
p =1/2 p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p = 1

2
p = 1

2

Table 9.10. An initial probability assignment is made to the interior cell holding
interval [3, 8].

3. For bookkeeping purposes, subtract the probability just assigned from
both corresponding marginal probabilities (Table 9.11).

4. Repeat step 1: Identify a row with the highest marginal probability des-
ignation, a column with the highest marginal probability, and the cell at
the intersection of that row and column. This cell is the one holding the
interval [8, 20] in Table 9.11.

5. Repeat step 2: Assign to the newly identified cell the maximum probability
consistent with the row and column constraints affecting it. This is the
lesser of the row and column probabilities. See Table 9.12.

6. Repeat step 3 in the table most recently modified: To keep track of
marginal probability that still needs to be allocated to interior cells, sub-
tract the probability just assigned to an interior cell from the correspond-
ing marginal probabilities (Table 9.13).

7. Repeat step 1 on the current table: Identify a row with the highest amount
of as-yet unallocated marginal probability of the rows, a column with the

206 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈[8, 20]
p = 1

4
p = p =

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ =0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ =0 p = 1/2

Table 9.11. The probability assigned to the interior cell holding [3, 8] is subtracted
from the contributing marginal probabilities, which are now labeled p′ instead of p
to indicate they have been modified. Then the cell holding [8, 20] is chosen as the
next one to allocate an initial probability to.

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈[8, 20]
p = 1

4
p = p =1/4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p = 1

2

Table 9.12. The cell holding interval [8, 20] has its probability assigned a value as
high as is consistent with its marginal probabilities.

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p′ =0 p = p =1/4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈[4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p′ =1/4

Table 9.13. The allocated probability is subtracted from the relevant marginal cell
probabilities, whose remaining unallocated probabilities are designated p′. Then the
next cell, holding interval [4, 12], is chosen.

highest amount, and the cell at the intersection of that row and column.
This cell holds interval [4, 12] in Table 9.13.

8. Repeat step 2: Assign to the just-identified cell the maximum probability
consistent with the row and column constraints affecting it. This will be
the lesser of its row and column unallocated marginal probabilities. See
Table 9.14.

9. Repeat step 3: Subtract the initial probability assigned the cell from its
corresponding marginal probabilities. See Table 9.15.

9 Bounded Families of Distributions 207

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p′ = 0 p = p = 1

4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈[4, 12]
p = 1

4
p = p =1/4

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p′ = 1

4

Table 9.14. An initial probability is assigned to the cell holding interval [4, 12].

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p′ = 0 p = p = 1

4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p′ =0 p = p =1/4

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p′′ =0

Table 9.15. The probability assigned to an interior cell is subtracted from the
relevant marginals, leaving all zeros in the margins. Key: The number of apostrophes
(p, p′, or p′′) reflects how many times an original marginal probability has been
decremented.

10. All marginal probability numbers are now 0, indicating that no marginal
probability remains to be allocated to interior cells. Therefore, any interior
cells not yet assigned an initial probability must be assigned 0 (Table 9.16).

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p′ = 0 p =0 p = 1

4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =0

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p′ = 0 p =0 p = 1

4

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p′′ = 0

Table 9.16. The interior cells are now fully initialized and ready for a linear pro-
gramming process to modify them to an optimal set of assignments that maximizes.

11. Since the interior cells are now initialized appropriately, the marginal
probability designations used for bookkeeping purposes are no longer
needed and can be replaced with the actual marginal probability values
that were originally present. This results in Table 9.17, which serves as
input to the linear programming problem.

208 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p = 1

4
p11 = 0 p21 = 1

4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p = 1

2
p12 = 1

2
p22 = 1

4

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p13 = 0 p23 = 1

4

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p = 1

2
p = 1

2

Table 9.17. The interior cells have been initialized and the table is ready for linear
programming to be applied.

Table 9.17 also gives distinctive subscripts to the interior cell probabili-
ties so that they can be referred to individually. From this table, linear pro-
gramming will find the best allocation of marginal probabilities over interior
cells, which is the one with the maximum value possible for the sum of the
probabilities of a designated subset of the interior cells. The linear program-
ming problem takes as input all of the row and column constraints plus the
optimization (or “objective”) function, which is the sum of the interior cell
probabilities to be maximized. For Table 9.17, this input is shown in Table
9.18.

Value p11 p21 p12 p22 p13 p23

1/4 1 1 0 0 0 0
1/2 0 0 1 1 0 0
1/4 0 0 0 0 1 1
1/2 1 0 1 0 1 0
1/2 0 1 0 1 0 1

3/4 1 0 1 0 1 1

Table 9.18. The five constraints (three row + two column) from Table 9.17 are
shown in the first five rows, followed in the last row by the optimization function
for maximizing the sum of the probabilities of the four interior cells whose interval
low bound is below 6. The 1’s and 0’s are coefficients of the pij from Table 9.17.

The linear programming process will take a chart like Table 9.18 and find
values for the various pij that maximize the number at the bottom of the Value
column. In the case shown, this is initially 3/4, the sum of the probabilities
whose associated intervals have low bounds below 6. Note that the initial
values of the probabilities shown in Table 9.17 determine the initial value of
3/4 for the optimization function. The 1’s in Table 9.18 are coefficients that
designate which probabilities are governed by which constraints. Thus, the
first row says that 1 ∗ p11 + 1 ∗ p21 + 0 ∗ p12 + 0 ∗ p22 + 0 ∗ p13 + 0 ∗ p23 = 1

4 or,
equivalently, p11 + p21 = 1

4 . This is a constraint stated by Table 9.17, as are
the next four rows. The remaining, last row is not a constraint but rather the

9 Bounded Families of Distributions 209

optimization equation. Hence, the value of 3/4 is not fixed, as it would be for
a constraint, but can vary. Normally it does vary, as the linear programming
algorithm tries to maximize it.

9.9 Conclusion

An introduction to the DEnv approach has been presented at the tutorial
level. More advanced features are available, and a considerable amount of
related work by others has appeared. Regarding advanced features, one is
the use of correlation between two random variables to supplement the basic
row and column constraints imposed by a joint distribution tableau. This is
described in detail in [5]. A slightly less general, but more accessible, discus-
sion of correlation along with an application to reliability of two-component
systems appears in [6]. Many joint distributions encountered in practice are
unimodal. Unimodality constraints in the DEnv approach and its software
implementation are discussed in [18]. A more theoretical discussion from the
Kreinovich lab appears in [7]. A tool and related documentation is available
for download at http://ifsc.ualr.edu/jdberleant/statool/index.htm.

Work on bounded families of distributions has experienced a surge of
interest in recent years. Considerable work has appeared in the biannual
International Symposium on Imprecise Probabilities: Theories and Appli-
cations (ISIPTA) sponsored by the eponymous society (http://sipta.org/).
The focus of the biannual Workshop on Reliable Engineering Computing
(www.gtsav.gatech.edu/workshop/rec08, .../rec06, and .../rec04) is even more
apropos. The most closely related and coherent compendium of work is still
Helton and Oberkampf [12], a collection of papers all focusing on the same set
of challenge problems concerning system response under uncertainty. Various
alternatives to the DEnv algorithm are explored in the context of this set of
problems. Also closely related are reports by Ferson et al. [9, 10]. Although
well-known in the field, Kuznetsov [14] is unfortunately currently unavailable
in English. Other books of interest include [8, 11, 15, 16]). All of these works
deal, as does the present work, with the important problem of drawing what
conclusions are possible in the presence of incomplete information: inference
under severe uncertainty.

References

1. Berleant, D., Anderson, G.T.: Decision-making under severe uncertainty for au-
tonomous mobile robots. In: Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics (2007)

2. Berleant, D., Cheng, H.: A software tool for automatically verified operations
on intervals and probability distributions. Reliable Computing 4, 71–82 (1998)

210 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

3. Berleant, D., Goodman-Strauss, C.: Bounding the results of arithmetic oper-
ations on random variables of unknown dependency using intervals. Reliable
Computing 4, 147–165 (1998)

4. Berleant, D., Zhang, J.: Representation and problem solving with distribution
envelope determination (DEnv). Reliability Engineering and System Safety 85,
153–168 (2004)

5. Berleant, D., Zhang, J.: Using Pearson correlation to improve envelopes around
the distributions of function. Reliable Computing 10, 139–161 (2004)

6. Berleant, D., Zhang, J.: Bounding the times to failure of 2-component systems.
IEEE Transactions on Reliability 53, 542–550 (2004)

7. Berleant, D., Kosheleva, O., Kreinovich, V., Nguyen, H.T.: Unimodality, inde-
pendence lead to NP–hardness of interval probability problems. Reliable Com-
puting 13, 261–282 (2007)

8. Fellin, W., Lessmann, H., Oberguggenberger, M., Vieider, R.: Analyzing Uncer-
tainty in Civil Engineering. Springer-Verlag, Berlin (2005)

9. Ferson, S., Hajagos, J., Berleant, D., Zhang, J., Tucker, W.T., Ginzburg, L.,
Oberkampf, W.: Dependence in Dempster–Shafer theory and probability bounds
analysis. Tech. rep., Sandia National Laboratory (2004). Report SAND2004-
3072

10. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S., Sentz, K.: Construct-
ing probability boxes and Dempster–Shafer structures. Technical Report
SAND2002-4015, Sandia National Laboratories (2003).

11. Halpern, J.Y.: Reasoning about uncertainty. MIT Press, Cambridge, MA (2003)
12. Helton, J.C., Oberkampf, W.L.: Special issue on alternative representations

of epistemic uncertainty. Reliability Engineering and System Safety 85, 1–369
(2004)

13. Kolmogoroff, A.: Confidence limits for an unknown distribution function. Annals
of Mathematical Statistics 12, 461–463 (1941)

14. Kuznetsov, V.: Interval statistical models. Radio i Svyaz, Moscow (1991)(in
Russian)

15. Manski, C.: Partial Identification of Probability Distributions. Springer-Verlag,
New York (2003)

16. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman & Hall,
New York (1990)

17. Wang, R., Pierce, E., Madnick, S., Fisher, C. (eds.): Information Quality. M. E.
Sharpe, Armonk, NY (2005)

18. Zhang, J., Berleant, D.: Arithmetic on random variables: squeezing the envelopes
with new joint distribution constraints. In: Proceedings of the Fourth Interna-
tional Symposium on Imprecise Probabilities and Their Applications (ISIPTA
’05), pp. 416–422 (2005)

10

IntBox: An Object-Oriented Interval
Computing Software Toolbox in C++

Michael Nooner and Chenyi Hu

Computer Science Department, University of Central Arkansas, Conway, AR
72035-0001, USA. mnooner,chu@uca.edu

In this book we have discussed applying interval methods in knowledge pro-
cessing. To effectively realize these methods, an interval computing environ-
ment is needed. In this chapter, we present an object-oriented interval software
toolbox written in C++. This toolbox, named IntBox,1 supports algebraic,
utility, and set operations among intervals, interval vectors, and interval ma-
trices. The design and implementation of this interval software toolbox follow
recently proposed interval computing standards. The toolbox can be easily
embedded into an ANSI/ISO C++ environment to enable interval software
development. It is portable, easy to use, well tested, and robust with built-in
error handling features. Instructions on package installation, testing, usage,
and sample applications are included.

10.1 Introduction

There are numerous software tools for interval computing written in main-
stream languages such as C, C++, Fortran, Java, as well as in computational
algebra systems, such as Maple, matlab, and Mathematica. However, these
packages are mostly designed and implemented for specific systems. Portable
software tools and techniques in compliance with established standards are
very helpful for both software developers and users. Recent efforts to stan-
dardize interval computing [3], [2] make it possible to develop a generalized
portable interval software development toolbox.

In the design of this toolbox, we selected the modular architecture empha-
sized in object-oriented programming. In interval computing, the operands
involved include intervals, interval vectors, and/or interval matrices. It is
essential to instantiate objects of interval, interval vector, and interval ma-
trix types. Therefore, three basic classes: - Interval, IntervalVector, and

1 The complete package is available at http://www.cs.uca.edu/interval/intbox.
An earlier version was initially reported in [5].

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 10, c© Springer-Verlag London Limited 2008

mnooner, chu@uca.edu
http://www.cs.uca.edu/interval/intbox

212 Michael Nooner and Chenyi Hu

IntervalMatrix - are included. Using the polymorphism and encapsulation
features of C++, this toolbox allows operations involving interval objects and
standard C++ objects without extra efforts from the programmer.

10.2 The Interval Class

10.2.1 Intervals

A nonempty mathematical interval [a, b] is the set {x ∈ R | |a ≤ x ≤ b}, where
a ≤ b. A machine interval [a∗, b∗] is a mathematical interval whose endpoints
are machine-representable numbers. We say that [a∗, b∗] is a machine repre-
sentation of [a, b] if [a∗, b∗] contains [a, b] (i.e., a∗ ≤ a and b ≤ b∗). We say
that the machine interval [a∗, b∗] is a sharp representation of a mathematical
interval [a, b] if and only if a∗ is the greatest machine-representable number
that is less than or equal to a; and b∗ is the least machine-representable num-
ber that is greater than or equal to b. The empty interval ∅, which does not
contain any real number, is required in this toolbox.

Interval arithmetic on mathematical intervals is defined as follows:

Let a and b be two mathematical intervals. Let op be one of the
arithmetic operations +,−,×, or ÷. Then a op b ≡ {a op b | a ∈
a, b ∈ b}. It is an exception2 if op represents ÷ and 0 ∈ b. If either a
or b is empty, then a op b is the empty interval.

All operations inside a computer are performed on machine intervals.
Arithmetic on machine intervals must satisfy the following condition:

Containment Constraint: Let a = [a, a] and b = [b, b] be intervals.
Let c = [c, c] be the interval result of computing a op b. Then c must
contain the exact mathematical interval a op b.

In other words, interval arithmetic on nonempty machine intervals requires
that we round down the lower bound and round up the upper bound, if they
are not machine representable, to guarantee that the machine interval result
contains the true mathematical interval result. This is needed to produce
guaranteed error bounds.

10.2.2 The Boost Library’s Interval Class

In late 2006, the C++ standardization committee evaluated and responded
positively to the proposal to add Interval Arithmetic as a part of ANSI/ISO
C++ Standard Library [3]. In the proposal, the peer-reviewed Boost interval

2 There has been significant progress on standardizing extended interval arithmetic
(involving division by intervals that contain zero) recently. For example, see [6].

10 IntBox: An Interval Computing Software Toolbox in C++ 213

arithmetic library, interval lib [4], is often cited as a prototype implemen-
tation of the C++ interval arithmetic standard. It is our belief that Boost’s
interval library will be very similar to the approved standard. Therefore, we
chose to use the Boost interval library for fundamental interval operations in
IntBox. Boost’s implementation was also chosen for two other reasons. First,
the Boost license is very flexible in that we are able to redistribute just the
interval lib portion of the much larger Boost package. Second, the Boost
library is highly cross-platform and cross-compiler compatible, which is an
important aspect of the design objectives.

The Boost package uses the class interval to perform interval operations.
The Boost interval class uses zero for the default value of an interval. Also
by default, the interval class dislikes empty intervals. In fact, it will throw
an exception if one is created. However, interval set operations may result in
the empty interval as a valid output. Therefore, proper handling of empty
intervals is required. Boost’s interval library does allow the user to set various
policies, including not throwing exceptions because of the empty intervals. We
created a template specialization called defualt interval that sets such a
policy.

10.2.3 Functionality for the Interval Class

The functionality for the interval class is grouped into the following cate-
gories: arithmetic, set, logic, and utility. Let a and b be two intervals. We list
implementational definitions for each of these operations associated with the
operator implemented in this toolbox.

• Arithmetic operations:
– Addition (operator +): a+b = [a+b, a+b] if neither a nor b is empty;

otherwise, a + b = ∅.
– Subtraction (operator −): a − b = [a − b, a − b] if neither a nor b is

empty; otherwise, a + b = ∅.
– Multiplication (operator ∗): a∗b = [min{ab, ab, ab, ab}, max{ab, ab, ab,

ab}] if neither a nor b is empty; otherwise, a ∗ b = ∅.
– Division (operator /): a/b = [min{a/b, a/b, a/b, a/b},max{a/b, a/b,

a/b, a/b}] if neither a nor b is empty and 0 6∈ b; if a or b is empty,
a/b = ∅; otherwise, if 0 ∈ b an exception is thrown.3

– Cancellation (method cancel()): a.cancel(b) = [a−b, a−b] if neither
a nor b is empty and a− a ≥ b− b; otherwise, a.cancel(b) = ∅.

• Set operations among intervals.
– Intersection (operator &): If max{a, b} ≤ min{a, b} a∩b = [max{a, b},

min{a, b}]; otherwise, a ∩ b = ∅.

3 The package may be extended to allow division by intervals that contain zero by
adopting an implementation of extended interval arithmetic standard.

214 Michael Nooner and Chenyi Hu

– Hull (method hull()): If both a and b are empty, then hull of a and
b is empty; if only one of a and b is empty, then hull of a and b is
the same as the nonempty interval; otherwise, then hull of a and b is
[min{a, b},max{a, b}].

• Logical operations:
– Equality (operator (==)): If a = b and b = a, then a = b.
– Less than4 (operator (<)): If a < b, then a < b.
– Greater than operator >): If a > b, then a > b.
– Disjoint test (method disjoint()): If a ∩ b = ∅, disjoint(a, b)

returns true.
– Interior test (method interior(): If (b ⊂ a), then b is an interior of

a.
• Utility functions:

– Midpoint (method midpoint(): The midpoint of an interval a is (a +
a)/2 provided a is not empty.

– Width (method width(): The width an interval a is a− a provided a
is not empty.

– Assignment (operator =): Stores the value of an interval to the left
operand.

– Output (operator <<): Stream insertion operator for output.
– Input (operator >>): Stream extraction operator for input.

In addition to above, the class supports elementary functions for intervals.
These include interval power, square root, exponent, logarithm, trigonometry,
and inverse trigonometry functions. Let f be an elementary function and let
x be an interval. Then f(x) returns an interval that contains f(x) ∀x ∈ x.

10.2.4 Sample Code

Here is a segment of example code that defines and accesses interval objects;
more specifically the Interval specialization is used. The code defines three
interval objects: a, b, and c with the default, single, and double parameters,
respectively.

The statement c < b returns true. Hence, the statement that outputs the
product of the two intervals is executed. The next statements find the tangent
of the interval c and then store the results in in the interval a.

default_interval a, b = 3.0, c(0.1, 0.2);
if (c < b)

cout << "c * b = " << c * b << endl;
a = tan(c);
cout << "The interval containing tangent "

<< c << " is: \n" << a << endl;

4 The operators <, and > check only the crisp relation.

10 IntBox: An Interval Computing Software Toolbox in C++ 215

The above code segment outputs:

c * b = [0.3 ; 0.6]
The interval containing tangent [0.1 ; 0.2] is:
[0.100335 ; 0.20271]

In the output, we use a semicolon to separate the lower and upper bounds of
an interval, as suggested by the proposed C++ interval standard library.

10.3 Functionalities Involving Interval Vector and
Matrices

Similar to floating point linear algebra, interval linear algebra is useful in most
calculations. The Basic Linear Algebra Subprograms Technical Forum [1] has
established an updated BLAS standard [2], in which a proposed interval BLAS
(iBLAS) standard was included in the journal of development (available at
http://www.netlib.org/blas/blast-forum/chapter5.pdf). As in iBLAS,
we use uppercase boldface letters, like A,B, and C, to denote interval ma-
trices; lowercase boldface letters are used for interval vectors; boldface Greek
letters denote interval scalars. The transpose of an interval matrix A is de-
noted by AT .

We follow the iBLAS standard in the design and implementation of this
toolbox. However, by applying features of the object-oriented programming
paradigm, this toolbox contains much more functionality than that of the
iBLAS. The functionalities related to interval linear algebra are grouped into
interval vector operations, interval matrix-vector operations, interval matrix-
matrix operations, and set and utility operations for interval vectors and in-
terval matrices.

10.3.1 Functionality Involving Interval Vectors

We list the main functionalities involving interval vector operations in this
toolbox.

• Interval vector reduction operations:
– Dot product (method dot): r ← βr + αxT y
– Vector norms (method norm): r ← ||x||1, ||x||2, ||x||∞
– Sum (method sum): r ←

∑
i xi

– Max magnitude and location (method amax val): k,xk; k = arg,
maxi{|xi|, |xi|}

– Min absolute value and location (method amin val): k,xk; k = arg,
mini{|xi|, |xi|} if 0 6∈ xi∀i; 0 otherwise

– Sum of squares (method sumsq): (a, b)←
∑

i x2
i , a · b2 =

∑
i x2

i

• Interval vector operations:

http://www.netlib.org/blas/blast-forum/chapter5.pdf

216 Michael Nooner and Chenyi Hu

– Addition/subtraction (operator +/−): elementwise addition or sub-
traction of two interval vectors with the same length

– Scale an interval vector (operator ∗): α ∗ x, where α is an interval.
– Reciprocal scale (method rscale): x← x/α
– Scaled interval vector accumulation (method axpby): y ← αx + βy
– Scaled interval vector accumulation (method waxpby): w ← αx + βy
– Scaled interval vector cancellation (method cancel): y ← αx	 βy
– Scaled interval vector cancellation (method wcancel): w ← αx	 βy

• Data movement with interval vector:
– Copy (operator =, or method copy): y ← x
– Swap (method swap): y ↔ x
– Permute vector (method permute): x← Px

• Interval vector-matrix operations:
– Matrix vector product (operator ∗ or method mv): A∗x or y ← αAx+

βy, or y ← αAT x + βy, or x← Tx,x← T T x
– Rank one updates (method rv): A← αxyT + βA

• Set operations involving interval vectors:
– Enclosed (method encv): x is enclosed in y if x ⊆ y.
– Interior (method interiorv): x is enclosed in the interior of y.
– Disjoint (method disjv): x and y are disjoint if x ∩ y = ∅.
– Intersection (method interv): y ← x ∩ y,z ← x ∩ y.
– Hull (method hullv): the convex hull of x and y.

• Utility operations for interval vectors:
– Empty element (method emptyelev): k if xk = ∅; or −1
– Left endpoint (method infv): v ← x
– Right endpoint (method supv): v ← x
– Midpoint (method midv): v ← (x + x)/2
– Width (method widthv): v ← x− x
– Construct (method constructv): x← u, v
– Insertion (operator <<): for output an interval vector
– Equality test (operator ==): if two interval vectors are equal

10.3.2 Functionality Involving Interval Matrices

We list the main functionalities of this toolbox involving interval matrix oper-
ations. As specified in the iBLAS standard, matrices involved can be general,
symmetric, triangular, general band, symmetric band, triangular band, and
so on.

• O(n2) matrix operations:
– Matrix norms (method norm): r ← ||A||1, ||A||F ,, ||A||∞, ||A||max

– Diagonal scaling (method diag scale): A←DA,AD
– Two sided di-scaling (method lrscale): A ← D1AD2, DAD, A +

BD

10 IntBox: An Interval Computing Software Toolbox in C++ 217

– Matrix accumulation and scale (method acc): B ← αA+βB, αAT +
βB

– Matrix add and scale (method add): C ← αA + βB
• Matrix matrix product (operator ∗, or method mm): A∗B, or C ← αAB+

βC, αAT B+βC, αABT +βC, αAT BT +βC, αBA+βC, αBT A+βC,
αBAT + βC, αBT AT + βC

• Data movement with interval matrices:
– Matrix copy (operator =, or method copy): B ← A, AT

– Matrix transpose (method trans): A← AT

– Permute matrix (method permute): A← PA,AP
• Set operations for interval matrices:

– Enclosed (method encm): A is enclosed in B if A ⊆ B.
– Interior (method interiorm): A is enclosed in the interior of B.
– Disjoint (method disjm): A and B are disjoint if A ∩B = ∅.
– Intersection (method interm): B ← A ∩B, C ← A ∩B.
– Hull (method hullm): the convex hull of A and B.

• Utility operations for interval matrices:
– Empty element (method emptyelem): if Aij = ∅ for some i and j
– Left endpoint (method infm): C ← A
– Right endpoint (method supm): C ← A
– Midpoint (method midm): C ← (A + A)/2
– Width (method widthm): C ← A−A
– Construct (method constructm): A← B,C
– Insertion (operator <<): for output an interval matrix
– Equality test (operator ==): if two interval matrices are equal

We implemented the above iBLAS functionalities in two C++ template
classes IntervalVector <I> and IntervalMatrix <I>. The template pa-
rameter (i.e., I), expects a Boost interval<T,P> type. By default, for the
reasons discussed earlier, the default interval specialization is used. This
object-oriented approach provides this toolbox with many user-friendly build-
in features.

10.4 The IntervalMatrix Class

The IntervalMatrix<I> class is for a general matrix and is the topmost
base class of all other structured matrix classes. Hence, it defines the general
properties that are shared by all of the more specialized matrices: symmet-
ric, triangular, general band, symmetric band, triangular band, and so on.
The underlying interval elements of the class are stored in a one-dimensional
partitioned array, consistently with the BLAS standard. The sample code at
the end of this section provides an example of using this base class. Detailed
documentation and source code for this class are included in the package.

218 Michael Nooner and Chenyi Hu

10.4.1 Creation

There are several different constructors. The most commonly used construc-
tor simply takes the dimensions of the matrix as two parameters. Another
constructor creates an interval matrix from two arrays, where the first and
the second arrays are the lower and upper bounds of an interval matrix, re-
spectively. For robustness, an element in the first array does not necessarily
have to be less than the corresponding element of the second; the two bounds
will simply be reversed. It is the user’s responsibility, if needed, to ensure
that the input lower bound is actually less than or equal to the upper bound.
Finally, there is also a default constructor, which creates a matrix that has no
underlying array and is of size 0× 0. The usage of the default constructor is
described in the following subsection. The size of a matrix is set by the above
three constructors and is fixed. The size of a matrix can be retrieved using
the getRows() and getCols() methods.

10.4.2 Assignment

As mentioned earlier, the dimensions of a matrix cannot be resized. There
is one exception to this rule, and that is assignment. For robustness, the
assignment operation disregards dimensions; it will resize the underlying array
as needed. Therefore, the default constructor is useful in that it allows one
to create unsized matrices that have no underlying array. Such matrices are
suitable for catching results.

The assignment operator uses the following rules to determine when to
allocate a new array. If the source matrix is smaller than or the same size as
the destination, then the array is not resized. Furthermore, if the right-hand
argument is an intermediate result (discussed in Section 10.4.5) and has the
same storage structure, then only a pointer assignment is needed, rather than
an elementwise copy.

10.4.3 Accessing Elements

The elements of an interval matrix can be accessed three ways. First, there
are the getAt() and setAt() methods. These methods allow getting and
setting of a given element in the matrix. Importantly, they check that the
given coordinates are within the bounds of the matrix. Alternatively, elements
within the matrix can be accessed by two other methods called getAtNC()
and setAtNC(). These two methods function like getAt() and setAt() ex-
cept that no dimension checking is done. These methods are used extensively
internally, because they add a modest increase to efficiency, by reducing the
amount of checking. Finally, there are two operators that allow access to the
elements of a matrix. The bracket operator (i.e., []), has been overloaded in
such a way that the class can be treated similarly to a two-dimensional array.
Also, the () operator has been overloaded to take two parameters (i.e., a row

10 IntBox: An Interval Computing Software Toolbox in C++ 219

and column index). Both operators simply offer a convenient wrapper for the
getAt() method.

10.4.4 Elementary Arithmetic Operations and Boolean Methods

Elementary arithmetic operations (e.g. addition and subtraction), are imple-
mented by overloading these operators: + (addition), - (subtraction), and
* (multiplication). Each of these operators, whenever appropriate, is valid
for matrix-matrix, matrix-vector, vector-matrix, matrix-interval, and interval-
matrix operations. When using pointers, utilizing overloaded operators can be
troublesome. Hence, each of these operators has an associated method that
performs the operation (i.e. add(), sub(), and mult()).

It is often useful to compare two matrices. With this in mind, several
comparison methods are offered. First, the == (equals) and != (not equals)
operators have been overloaded. Two matrices are considered equal if the
corresponding elements in both matrices are equal. The method isEmpty()
will return true if the matrix contains an empty element. The method
isSymmetric() can be used to tell whether the matrix is symmetric. The
method isTriangular() will return true if the matrix has a triangular shape.
The proposed iBLAS standard defines three set tests that a library must have.
First is the enc() method, which tests to see if the elements of a matrix
are supersets of the corresponding elements of another matrix. Second is the
interior() method, which acts like enc() except the elements are tested to
see if the elements of another matrix are proper subsets. Finally, the disj()
method returns true if all of the corresponding elements in two matrices are
disjoint.5

10.4.5 iBLAS Methods

The iBLAS functionalities are implemented as methods. The parameters of
an iBLAS method are structured as follows: first matrices or vectors, then
transpose flags, next a side flag, and, finally, any scalars. For example, be-
low is the function header for the mm() method, which solves formulas like
αAT ∗BT + βC.

IntervalMatrix<I>& mm(IntervalMatrix<I>& b, //Matrix
IntervalMatrix<I>& c, //Matrix
bool transpose_this_matrix, //Transpose flag
bool b_transpose, //Transpose flag
bool on_left, //Side flag
const I& alpha, //Scalar
const I& beta, //Scalar
IntervalMatrix<I>& result_mat)

5 Although this is not necessary mathematically, the implementation ensures that
there is no overlap in any projected subspaces.

220 Michael Nooner and Chenyi Hu

The calling object takes the place of the matrix A in the formula with the
parameters given above. This is a general rule for all the iBLAS functions.
Notice that the above example returns the result of the calculation. What is
actually returned is either a recycled parameter or a new intermediate result
object allocated off the heap space. This can be very inefficient, especially for
large matrices. However, returning a value is useful when mixing operators and
method calls together. To address these concerns, the result mat parameter
can be used. This is an optional parameter that always appears last in every
method. If a matrix is specified, then that matrix will be used instead of a
new or recycled matrix. Be aware that result mat must be of the proper
size to hold the results of the calculation; if it is not, then an exception will
be thrown; that is, it will not be resized. Furthermore, if the result mat
parameter is specified, then a reference to result mat is the returned value.

When the side flag is true, then the calling object is on the left side of
the multiplication, and when it is false the calling object is on the right side
of the multiplication (e.g., B ∗ A). You may wonder why not use B as the
calling object. There are three reasons why the flag was kept. First, it is a
part of the proposed iBLAS standard. Second, it allows B to be the result of
a calculation; for example

A.mm((M+N), C, false, false, false) ⇔ (M + N) ∗A + C

Finally, the subclasses of IntervalMatrix<I> have specialized memory
structures. This allows a calculation to take advantage of knowing the memory
structure of the calling object. This means that for B ∗ A + C, where A is,
for example, a banded matrix, it is faster to call A.mm(B, ...) than to call
B.mm(A, ...).

10.4.6 Structured Matrices

There are three basic categories of structured matrices in iBLAS. First is the
general banded matrix. This is followed by triangular and symmetric matrices.
Figure 10.1 presents the mathematical relationships of different kinds of in-
terval matrices involved in iBLAS. It provides the base for the class hierarchy
implemented in this toolbox.

The following derived classes from IntervalMatrix<I> are included in the
library:

• TriIntervalMatrix
• SymIntervalMatrix
• BandedIntervalMatrix
• TriBandedIntervalMatrix
• SymBandedIntervalMatrix

Only differences between these specializations and IntervalMatrix<I>
are discussed. All of the specialized matrices are square. Hence, the construc-
tors of structured matrices take only a single dimension parameter instead of

10 IntBox: An Interval Computing Software Toolbox in C++ 221

TriIntervalMatrix

IntervalMatrix

SymIntervalMatrix BandedIntervalMatrix

TriBandedIntervalMatrixSymBandedIntervalMatrix

Fig. 10.1. Mathematical relationship of interval matrices in iBLAS.

two. Single inheritance is used in this library since it greatly simplifies both
the coding and understanding of the library.

The class BandedIntervalMatrix<I> implements banded matrices. When
constructing a banded matrix, the user will need to supply the number of
subdiagonals and superdiagonals. Triangular interval matrices are symbol-
ized by the class TriIntervalMatrix<I>, and symmetric interval matrices
are represented by the class SymIntervalMatrix<I>. The derived classes
TriBandedIntervalMatrix<I> and SymBandedIntervalMatrix<I> can be
used to effectively process matrices that are triangular and banded, or
symmetric and banded. Both classes inherit and use the memory struc-
ture from the class BandedIntervalMatrix<I>. Of these two classes, the
TriBandedIntervalMatrix<I> class only cares about the number of sub-
diagonals for lower triangular and the number of super-diagonals for upper tri-
angular. The SymBandedIntervalMatrix<I> uses the same number for both
of the sub-diagonals and super-diagonals. This emphasis on the diagonals is
the reason why the two classes inherit from BandedIntervalMatrix<I>. How-
ever, the operators and function names involve these specialized matrices are
the same as those in the general IntervalMatrix. For more information about
these derived classes, users may refer to the documentation for this toolbox.

10.4.7 Extension

The OOP design of this toolbox provides a great deal of flexibility for a
user to extend the library with specialization. To implement a new matrix
type (e.g., UserDefinedIntervalMatrix), that maintains the interoperabil-
ity with the rest of this toolbox, one must meet the following requirements.
First, the user-defined type must inherit, either directly or indirectly, from
IntervalMatrix<I>. Second, if the user-defined class uses a different storage
mechanism than its parent class, then the user must overload the getAtNC()
and setAtNC() methods. Finally, the methods getRows() and getCols()
must function correctly. If the user follows the three steps outlined here, then
the new class will seamlessly interoperate with the rest of this toolbox.

222 Michael Nooner and Chenyi Hu

10.4.8 Sample Code

Here is a segment of example code that defines and accesses interval matrices.
The code defines three 3 × 3 interval matrices a, b, and c, where b and
c are upper and lower triangular matrices, respectively. We initiate them
with different constructors and then perform arithmetic, logic, and utility
operations.

#include <iostream>
#include <iomanip>
#include <IntBox.hpp>

using namespace std;
using namespace intbox;

int main() {
IntervalMatrix<> a(3,3);
TriIntervalMatrix<> b(3, true), c(3, false);

b[0][0] = default_interval(-0.1, 0.1);
b[1][0] = -3; b[1][1] = 2;
b[2][0] = 5; b[2][1] = -1; b[2][2] = 5;

c[0][0] = 0; c[0][1] = -3; c[0][2] = 5;
c[1][1] = 2; c[1][2] = -1;

c[2][2] = 5;
if (b.enc(c.transpose()))
cout << "B enclose C^T\n" << endl;

cout << setprecision(3) << setiosflags(ios::fixed);
a = b * c * default_interval(.5);
cout << "A = B * C * [0.5 ; 0.5]\n" << a << endl;

return 0;
}

The above code segment outputs:

B enclose C^T

A = B * C * [0.5 ; 0.5]
| [0.000 ; 0.000] [-0.150 ; 0.150] [-0.250 ; 0.250] |
| [0.000 ; 0.000] [6.500 ; 6.500] [-8.500 ; -8.500] |
| [0.000 ; 0.000] [-8.500 ; -8.500] [25.500 ; 25.500] |

10 IntBox: An Interval Computing Software Toolbox in C++ 223

In the output, we use a semicolon to separate the lower and upper bounds of
an interval as suggested by the proposed C++ interval standard library.

10.5 The IntervalVector Class

This software toolbox uses a single one-dimensional interval array to store
all of the elements in an interval vector. Unlike matrices, we do not consider
any specializations of its structure. Hence, only one class is needed in the
implementation, namely IntervalVector<I>.

10.5.1 Creation and Assignment

There are three constructors in the class. The most commonly used one simply
takes the length of the vector. Another constructor creates a vector from two
arrays, where the first array is the lower bound and the second array is the
upper bound of an interval vector. For robustness, an element in the first
array does not necessarily have to be less than the corresponding element of
the second. If it happens, the two elements will simply be reversed. If needed,
the user should verify if the lower bound is actually less than or equal to
the upper bound for each interval in the input data. The size of vector is set
by the constructor and is fixed. The size of a vector can be retrieved using
the getDimension() method. The default constructor creates a vector of size
zero, with no underlying array. It is best used for catching returned values
similar to the default constructor of IntervalMatrix<I>.

As mentioned earlier, the size of a vector cannot be resized. As with ma-
trices, there is one exception to this rule, and that is assignment. All of the
principles dealing with matrix assignment are also applied to vector assign-
ment. The elements of a vector can be accessed the same ways that matrix
elements can be accessed.

10.5.2 Overloaded Operators and Boolean Methods

As previously mentioned, this library also overloads the arithmetic opera-
tors for elementwise arithmetic operations of interval vectors such as addition
and multiplication. These overloaded operators are + (addition), - (subtrac-
tion), and * (multiplication). Each of these operators, whenever appropriate,
is valid for vector-vector, vector-interval, and interval-vector operations. As
in matrices, each of these operators has an associated method that performs
the operation (i.e., add(), sub(), and mult()). It is recommended that these
methods be used directly if the user is utilizing pointers.

224 Michael Nooner and Chenyi Hu

It can be useful to compare two interval vectors. With this in mind we
implemented several Boolean methods for interval vectors in this toolbox.
First, the == (equal) and != (not equal) operators have been overloaded. Two
vectors are considered equal if each corresponding element in both vectors
is equal. The method isEmpty() will return true if the vector contains an
empty element. Furthermore, as with matrices, the Boolean methods enc(),
interior(), and disj() have also been implemented.

10.5.3 iBLAS Methods for Interval Vectors

The IntervalVector<I> class uses the same approach to implementing the
iBLAS methods as discussed in the previous section. The parameters of iBLAS
methods of this class start with other vectors followed by any scalars. For ex-
ample, below is the function header for the axpby() method, which computes
the vector α ∗ x + β ∗ y.

IntervalVector<I>& axpby(IntervalVector<I>& y,//A Vector
const I& alpha, //A Scaler
const I& beta, //A Scaler
IntervalVector<I>& result_vec)

The calling object takes the place of the x in the formula. This is a general
rule for iBLAS functions. The parameters are structured based on the formulas
given above. The parameter result vec is an optional parameter that always
appears last in every method. It can be used to store the return value. If a
vector for result vec is specified, then that vector will be used instead of a
new or recycled one. Furthermore, if the result vec parameter is specified,
then a reference to result vec is returned.

10.5.4 Sample Code

Here is a segment of example code that defines and accesses interval vectors
and matrices. The code defines a 3 × 3 interval matrix a and two interval
vectors b and c.

#include <iostream>
#include <iomanip>
#include <IntBox.hpp>

using namespace std;
using namespace intbox;

int main() {
IntervalMatrix<> a(3,3), result;
IntervalVector<> x(3), y(3);

10 IntBox: An Interval Computing Software Toolbox in C++ 225

a[0][0] = 1; a[0][1] = -7; a[0][2] = 0;
a[1][0] = -3; a[1][1] = 2; a[1][2] = 6;
a[2][0] = 5; a[2][1] = -1; a[2][2] = 5;

x[0] = default_interval(-5.3, -0.9);
x[1] = default_interval(-1.0e-3, 0);
x[2] = 16;

y = x * default_interval(-10, 1.25);

x = x.axpby(y, 1, default_interval(.5, .6));
result = a.r(x, y); //Rank one update of matrix

cout << "result=(x+[-10;1.25]*x*[.5;.6])+[-10;1.25]*x*a\n"
<< result << endl;

return 0;
}

The above code segment outputs:

result=(x+[-10;1.25]*x*[.5;.6])+[-10;1.25]*x*a
| [-490.575 ; 1638.7] [-7.09275 ; -6.691] [-4944 ; 1484] |
| [-3.09275 ; -2.682] [1.99998 ; 2.00006] [5.04 ; 6.28] |
| [-4235 ; 1489] [-1.8 ; -0.72] [-4475 ; 12805] |

10.6 Obtain, Install, and Use the Toolbox

10.6.1 Obtain the Toolbox

Through www.cs.uca.edu/interval, the interval computations homepage at
the University of Central Arkansas, this package can be downloaded online
for free. The toolbox can be obtained in two forms. First, you can download
a binary installer for Windows. Alternatively, you can download a gziped tar-
ball, which is suitable for installation on Unix-like operation systems. Both
packages contain the complete documentation, source code, tests, sample ap-
plication programs, the license, and a README file. The documentation offers
lengthy descriptions of all the files, classes, class members, and the intbox
namespace. It is written in HTML format and organized in the doc directory
of the package.

10.6.2 Install and Test the Toolbox

For easy installation and testing of this library, a single makefile is provided for
machines with a GCC compiler, and a binary installer is provided for installing

www.cs.uca.edu/interval

226 Michael Nooner and Chenyi Hu

on machines with Microsoft Visual Studio .NET 2003. If the user already
has Boost installed on the computer, then neither the binary installer nor the
make file will install the Boost interval library; that is, it will not overwrite the
user’s installation. Detailed installation instructions as well as information on
porting the toolbox to unsupported platforms or compilers is provided in the
Readme.html file. The package is licensed under the Boost Software License
version 1.0.

We have installed and tested this library on various processors, operating
systems, and compilers. The processors include an Intel Core Duo processor,
an Intel Pentium 4M, Sun SPARC IV, and an AMD-64 processor. The list
of operating systems used to test the library consists of Windows XP using
both Microsoft Visual Studio .NET 2003 and CygWin, Solaris 10 using GCC,
and, finally, Ubuntu Linux 7.10 also using GCC. The compilers used include
Microsoft Visual Studio .NET 2003, GCC 3.4.3-4, and GCC 4.1.2. Written
in standard C++, this toolbox should work for any computer with a modern
C++ compiler. For those who may experience installation problems on other
platforms, please refer to the Readme.html file for further information.

10.6.3 Using the Package

To use the library in applications, the user need only do two things. First, one
should include the header file <IntBox.hpp>; this is the only file needed to ac-
cess the library. Second, one should make the appropriate using declarations,
since all the classes are in the intbox namespace.

Here is a sample program. It defines and manipulates intervals, interval
matrices, and interval vectors.

#include <iostream>
#include <iomanip>
#include <IntBox.hpp>

using namespace std;
using namespace intbox;

int main() {
default_interval a = 2;
IntervalMatrix<> A(2, 2), M, N;
IntervalVector<> x(2), y(2), r;

A[0][0] = default_interval(-1.1, 5);
A[0][1] = default_interval(2, 3.3);
A[1][0] = default_interval(-1, 3.3);
A[1][1] = 5.7;

x[0] = 4; x[1] = default_interval(4.9, 5.1);

10 IntBox: An Interval Computing Software Toolbox in C++ 227

y[0] = 10; y[1] = default_interval(10.95);

try {
M = A.mid();
M = A - M;
r = (a*A*M).mv(x, y);

cout << setprecision(17) << showpoint;
cout << "A - A.mid() =\n" << M << endl;
cout << "aAMx + y =\n" << r << endl;

} catch (INTERVAL_EXCEPTION ie) {
cout << ie << endl;

}
return 0;

}

The above sample program can be compiled using Microsoft Visual Studio
.NET 2003 using the standard Win32 Console project type. Using GCC, the
sample program can be compiled on the command line as follows:

gcc -o sample sample.cpp

The above code segment outputs the following. To fit the output on the page,
we omitted seven or more digits in the first output matrix.

A - A.mid() =
| [-3.050...003 ; 3.050..003] [-0.649...991 ; 0.649...991] |
| [-2.149...999 ; 2.149..999] [0.000...000 ; 0.000...000] |

aAMx + y =
{ [-201.91000000000003 ; 221.91000000000003]
[-189.48900000000006 ; 211.38900000000007] }

The documentation of this package provides more detailed information for
using this toolbox.

10.7 Conclusions

This interval toolbox provides a freely available, well tested, portable, and
robust coding tool for interval software development, with extensive docu-
mentation. It can be easily embedded into any standard C++ environment.
With an object-oriented design and implementation in C++, this toolbox is
easy to use, even for beginners with little knowledge of interval computing.

228 Michael Nooner and Chenyi Hu

Acknowledgment: The authors would like to express their gratitude to Dr.
R. Pozo, Dr. R. B. Kearfott, Dr. P. Young, and Dr. A. Goldsztejn for their
insightful comments which helped us to improve the package. The authors also
thank the developers of the Boost interval library. This work is also partially
supported by the U.S. National Science Foundation under grants CISE/CCF-
0202042 and CISE/CCF-0727798.

References

1. Blackford, G., Demmel, J., Dongarra, J., E.A.: Basic linear algebra subprograms
technical (BLAST) forum standard. High Performance Computing Applications
16(1-2), 1–199 (2001). http://www.netlib.org/blas/blast-forum/

2. Blackford, G., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., E.A.: An
updated set of basic linear algebra subprograms (BLAS). ACM Transactions on
Mathematical Software 2(28) (2002)

3. Brönnimann, H., Melquiond, G., Pion, S.: A proposal to add interval arith-
metic to the C++ Standard Library. Technical proposal N1843-05–0103, CIS,
Brooklyn Polytechnic University, Brooklyn, NY (2005). URL http://boost.

org/libs/numeric/interval/doc/interval.htm

4. Melquiond, G., Pion, S., Brönnimann, H.: Boost C++ libraries: Interval arith-
metic library (2002). URL: http://www.boost.org/libs/numeric/interval/

doc/interval.htm

5. Nooner, M., Hu, C.: A computational environment for interval matrices. In: R.L.
Muhanna, R.L. Mullen (eds.) Proceedings of a workshop on Reliable Engineering
Computing, pp. 65–74. Georgia Tech. University, Savanna, GA (2006). http:
//www.gtsav.gatech.edu/workshop/rec06/proceedings.html

6. Pryce, J.D., Corliss, G.F.: Interval arithmetic with containment sets. Computing
78(3), 251–276 (2006). DOI http://dx.doi.org/10.1007/s00607-006-0180-4

http://www.netlib.org/blas/blast-forum/
http://boost.org/libs/numeric/interval/doc/interval.htm
http://boost.org/libs/numeric/interval/doc/interval.htm
http://www.boost.org/libs/numeric/interval/doc/ interval.htm
http://www.boost.org/libs/numeric/interval/doc/ interval.htm
http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html
http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html
http://dx.doi.org/10.1007/s00607-006-0180-4

Index

α-cut, 90
ε-inflation, 108, 124
≺ operator, 169
� operator, 171
s-norm, 28, 29, 32
t-conorm, 85
t-norm, 28, 29, 32, 34, 45, 84

interval BLAS, 215

absolute error, 125
accuracy ratio, 125
Adaline, 15
adaptive net, 16, 51
aggregation, 39, 46
aggregation operation, 36
alpha-cut, 90
and operation, 84
ANFIS, 49, 51
anomaly detection, 137
arithmetic, on distributions, 193, 197
ART structure, 22, 23
assumptions, arbitrary, 184
assumptions, unjustified, 184
augment path, flow network, 176
average membership, 39

backpropagation, 17, 22, 31, 50, 51
bats, 188
Bel, 56, 57
belief, 56, 57, 59, 67
bias, 14, 15
Boost interval library, 213
box, 7

CANFIS, 51, 52
capacity flow network, 176

interval capacity, 178
interval residual capacity, 178
max-flow min-cost, 177
maximum flow, 176

center of gravity, of an interval, 103
centroid, 40, 41
centroid method, 39
chain rule, 18
confidence interval, 125
confidence limits, 184
conflict, 62
constraint satisfaction, 78
constraint, unimodality, 209
correlation, 209
COSY, 4
Counter-Propagation, 19, 20
crisply comparable, 152
crisply determined interval matrix

game, 153
curve, staircase, 195
cutting-edge measurement, 81

decision
expected value, 145
rule-based, 100
rule-matrix, 136

defuzzification, 40, 41, 43, 46–48
degree of belief, 83
Dempster-Shafer formalism, 95
DEnv algorithm, 183
dependency, unknown, 186, 188

230 Index

di-graph, 167
Dijkstra’s shortest path algorithm, 172
directed rounding, 4
distance

interval, 144
interval vector, 144

distribution, families, 183
distributions, 183

discretizing, 197
families of, 190
unknown, 184

distributions, bounded families of, 191

empty tube, 142
endpoint representation, 102
entropy, 54, 55, 62
entropy function, 54, 62
envelope, left, 200
envelope, right, 201
envelopes, 183, 192, 197
environment-decision pair, 138
equivalence relation, 64
error vector, 18
error, measurement, 184
estimation, ratio of, 106
expected value of a decision, 145
expected value, interval matrix game,

157

fair interval matrix game, 153
fat interval rule matrix, 140
fitness function, 26, 68, 71
flow network, 176

augment cost, 177
augment cycle, 177
augment path, 176
capacity, 176
cost, 177
flow, 176
fuzzy augment cycle, 179
interval capacity, 178
interval fuzzy augment path, 178
interval residual capacity, 178
max-flow min-cost, 177
residual capacity

edge backward, 176
edge forward, 176
path, 176

residual cost interval , 179

Ford-Fulkerson, 176
forecast

in-sample, 127
out-of-sample, 127

fuzzily comparable, 152
fuzzily determined interval matrix

game, 155
fuzzily transitive, 171
fuzziness, 54
fuzzy antecedent, 34
fuzzy consequent, 34
Fuzzy Controller, 42
fuzzy inference, 31
fuzzy input, 34, 38, 49
fuzzy logic, 43, 71, 82

intuitionistic, 95
fuzzy measure, 56, 57
fuzzy neuron, 49
fuzzy number, 90
fuzzy output, 34, 35, 39, 42
fuzzy partial order, 171
fuzzy probability, 38
fuzzy relation, 31, 32, 34, 37, 38, 64

inreflexive, 171
partial order, 171
transitive, 171

fuzzy saddle interval, 155
fuzzy set, 35, 39, 55, 62, 63
fuzzy set of type 2, 43
fuzzy subset, 26, 27, 31, 32, 37
fuzzy system, 48, 69, 71

Gaussian function, 31
genetic algorithm, 68, 69
graph, 167

connected, 167
directed, 167
interval-weighted, 168
minimum spanning tree, 174
path, 167
spanning tree, 174
undirected, 167
weighted, 167

Hebbian learning, 23
height defuzzification, 46
Householder transformation, 122

iBLAS, 215

Index 231

IDS, 137
implication function, 32, 34, 35, 37, 38
implication relation, 32
in-sample forecast, 127
indirect measurement, 77
information system, 64
information, ignoring, 186
input layer, 22
input vector, 20, 22
inreflexive, 171
instar net, 21
IntBox, 211

download, 225
interval class, 213
interval matrix class, 217
interval matrix functionality, 216
interval vector class, 223
interval vector functionality, 215

interval, 1
BLAS, 215
degenerate, 2
distance, 144
empty, 1
empty interval, 212
endpoint representation, 1
fuzzy partial order, 169, 171
machine interval, 212
mathematical interval, 212
midpoint of, 1
midpoint-width representation of, 2
thin, 2
trivial, 2
width of, 1

interval approximation
absolute error, 125
accuracy ratio, 126

interval arithmetic, 212
additive inverse, 178
cancellation, 178
definition of, 3
outwardly rounded, 4

interval dependency, 6
interval function, 120
interval function approximation, 123

confidence interval approximation,
125

inner approximation, 124
least squares approximation, 124
min-max approximation, 125

width adjustment, 124
interval graph, 168
interval linear system of equations, 104

approximated solution, 105
degenerated, 108
ratio of estimation, 106

inner approximated solution, 105
tolerable solution set, 105
united solution set, 104

interval matrix, 99, 100
endpoint representation, 102
midpoint-width representation, 102
PCA, 111
SVD, 109

interval matrix game, 148
crisply determined, 153
expected value, 157
fair, 153
fuzzily determined, 155

interval Newton methods, 5
interval rule matrix, 137

adaptive training, 143
decision making, 144
divide-and-conquer, 142
fat, 140
feature selection, 143
page, 142
straightforward approach, 139

interval vector, 7, 104
volume, 106
distance, 144

interval-valued matrix games, 100
interval-weighted graph, 168

minimum spanning tree, 174
shortest path, 172

crisp, 173
fuzzy, 173
uniqueness, 174

INTLAB, 7
intrusion detection systems, 137
intuitionistic fuzzy logic, 95

joint distribution tableau, 199

knowledge processing
definition of, 78

knowledge, insufficient, 183, 186
Kohonen level, 20
Kohonen net, 19

232 Index

Kruksal’s algorithm, 175

learning factor, 18, 19
learning rule, 19
least squares approximation, 121
linear program, initialization, 204
linear programming, 203
lower approximation, 64

mass, 56, 57, 62
matrix game, 147

crisply determined interval, 152
fuzzily determined interval, 155
interval, 148
interval-valued, 100
strictly determined, 148

Max, 28
maximum flow, 176
measurement

cutting-edge, 81
indirect, 77

membership, 27, 30
membership function, 27, 30, 31, 33, 35,

38, 39, 41, 43, 83
midpoint matrix, 102
Min, 28
min-max approximation, 125
misuse detection, 137
mixed strategy, 157
model uncertainty, 80
model variables, 184
Monte Carlo, 183
Monte Carlo, second-order, 190
MST, 174
multiplicative antecedent, 34
multiplicative consequent, 34
multiplicative input, 34

necessity, 59
negation operator, 29
net input, 14
neural net, 13–15, 26, 50, 52, 68
neuro-fuzzy, 50, 54
neuro-fuzzy system, 43, 72
neuron, 13, 17
nonspecificity, 54, 55, 61–63
normal equations, 122

OLS, 123

optimization problems, 78
or operation, 85
ordinary least squares, 123
out-of-sample forecast, 127
outer enclosure, 9
output layer, 22
outstar net, 20
outward rounding, 4

parameter vector, 16
partial order relation, fuzzy, 171
path, of a graph, 167
PCA, 111
plausibility, 56, 57, 59
Pls, 56, 57
possibility, 34, 59, 60, 63, 67
principal component analysis, 111

ratio of estimation, 106
ratio, accuracy, 125
relative inventory level, 131
relative stock model, 131
RIN, 131
risk analysis, 183
robot, 186
rolling time window, 127
rough set, 64, 71
rule-based decisions, 100
rule-matrix, 136

S-function, 31
saddle interval, 153

fuzzy, 155
saddle value, 148
seismic experiments, 76
sensitivity, 16
shortest path algorithm, Dijkstra’s, 172
similarity relation, 64
simulation, 183
singular value decomposition, 109
soft computing, 13, 71
standard backpropagation, 17, 19
strictly determined matrix game, 148
strife, 54, 55, 63
strife function, 62
sup-min composition, 31, 33, 34
SVD, 109

tableau, joint distribution, 199

Index 233

thermostats, 184
thin interval, 2
tolerable solution set, 105
total uncertainty, 38, 63
training set, 15, 16, 19, 22, 31, 41, 53,

68, 71
transfer function, 14, 15, 17, 20, 21
transitive, fuzzily, 171
triangular function, 31
TSK model, 43, 48
tube, 141

empty, 142
removable, 142

uncertainty, 13, 38, 39, 44, 47, 54, 60,
61, 63, 65, 71

uncertainty, representing, 192

universe of discourse, 27, 37

upper approximation, 64, 65

V operation, 36

value interval, 153

volatile function, 119

width matrix, 102

winning neuron, 20

wrapping effect, 7

Zadeh’s extension principle, 88

zero-sum game, 148

	Preface
	List of Contributors
	1 Fundamentals of Interval Computing
	Ralph Baker Kearfott, Chenyi Hu
	2 Soft Computing Essentials
	Andre de Korvin, Hong Lin, and Plamen Simeonov
	3 Relations Between Interval Computing and Soft Computing
	Vladik Kreinovich
	4 Interval Matrices in Knowledge Discovery
	Chenyi Hu, R. Baker Kearfott
	5 Interval Function Approximation and Applications
	Chenyi Hu, Ling T. He, Shanying Xu
	6 Interval Rule Matrices for Decision Making
	Chenyi Hu
	7 Interval Matrix Games
	W. Dwayne Collins, Chenyi Hu
	8 Interval-Weighted Graphs and Flow Networks
	Chenyi Hu, Ping Hu
	9 Arithmetic on Bounded Families of Distributions: A DEnv Algorithm Tutorial
	Daniel Berleant, Gary Anderson, Chaim Goodman-Strauss
	10 IntBox: An Object-Oriented Interval Computing Software Toolbox in C++
	Michael Nooner, Chenyi Hu
	Index

